PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Simulation of the Schrödinger particle non-elastic scattering with emission of photon in the quantum register

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates whether a quantum computer can efficiently simulate the non-elastic scattering of the Schrödinger particle on a stationary excitable shield. The return of the shield to the ground state is caused by photon emission. An algorithm is presented for simulating the time evolution of such a process, implemented on standard two-input gates. The algorithm is used for the computation of elastic and non-elastic scattering probabilities. The results obtained by our algorithm are compared with those obtained using the standard Cayley’s method.
Rocznik
Strony
1217--1225
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • Institute of Information Technology FTIMS, Technical University of Łódź, ul. Wólczańska 215, 90-924 Łódź, Poland
Bibliografia
  • [1] R. Feynman, “Simulating physics with computers”, Int. J. Theor. Phys. 21, 467-488 (1982).
  • [2] S. Wegrzyn, J. Klamka, L. Znamirowski, R. Winiarczyk, and S. Nowak, “Nano and quantum systems of informatics”, Bull. Pol. Ac.: Tech. 52(1), 1-10 (2004).
  • [3] J.A. Miszczak, “Models of quantum computation and quantum programming languages”, Bull. Pol. Ac.: Tech. 59(3), 305‒324 (2011).
  • [4] P.W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring”, Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 1994, pp. 124‒134.
  • [5] L.K. Grover, “From Schrödinger equation to the quantum search algorithm”, Am. J. Phys. 69, 769‒777 (2001).
  • [6] S. Lloyd “Universal Quantum Simulators”, Science 273(5278), 1073‒1078 (1996), doi:10.1126/science.273.5278.1073.
  • [7] T. Schaetz, C.R. Monroe, and T. Esslinger, “Focus on quantum simulation”, New J. Phys. 15, 085009, (2013).
  • [8] B.P. Lanyon, et al., “Universal digital quantum simulation with trapped ions”, Science 334(6052), 57‒61 (2011). doi: 10.1126/science.1208001.
  • [9] A.M. Childs, D. Maslov, Y. Nam, N.J. Ross, and Y. Su, “Toward the first quantum simulation with quantum speedup”, PNAS 115(38), 9456‒9461 (2018), doi:10.1073/pnas.1801723115.
  • [10] D. Wecker, M.B. Hastings, N. Wiebe, B.K. Clark, C. Nayak, and M. Troyer, “Solving strongly correlated electron models on a quantum computer”, Phys Rev A 92, 062318 (2015), doi:10.1103/PhysRevA.92.062318.
  • [11] C. Kokail et al, “Self-verifying variational quantum simulation of lattice models”, Nature 569, 355–360 (2019), doi:10.1038/s41586‒019‒1177‒4.
  • [12] D. Wecker, B. Bauer, B.K. Clark, M.B. Hastings, and M. Troyer, “Gate count estimates for performing quantum chemistry on small quantum computers”, Phys Rev A 90, 022305 (2014), doi:10.1103/PhysRevA.90.022305.
  • [13] C. Hempel et al., “Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator”, Phys. Rev. X 8, 031022 (2018), doi:10.1103/PhysRevX.8.031022.
  • [14] S.P. Jordan, K.S.M. Lee, and J. Preskill, “Quantum algorithms for quantum field theories”, Science 336, 1130–1133 (2012), doi:10.1126/science.1217069.
  • [15] S. Wiesner, “Simulation of many-body quantum systems by a quantum computer”, arXiv:quant-ph/9603028.
  • [16] C. Zalka, “Efficient simulation of quantum system by quantum computers”, Fortschr. Phys. 46, 877‒879 (1998).
  • [17] G. Strini, “Error sensitivity of a quantum simulator I: a first example”, Fortschr. Phys. 50, 171‒183 (2002).
  • [18] G. Benenti and G. Strini, “Quantum simulation of the singleparticle Schrödinger equation”, Am. J. Phys. 76, 657‒663 (2008), doi:10.1119/1.2894532.
  • [19] M. Ostrowski, “Quantum simulation of the tunnel effect”, Bull. Pol. Ac.: Tech. 63(2), 379‒383, (2015).
  • [20] M. Ostrowski, “Quantum Simulation of Two Interacting Schrödinger Particles”, Open Syst. Inf. Dyn. 23(4), 1650020 (2016).
  • [21] J. Yepez and B. Boghosian, “An efficient and accurate quantum lattice-gas model for the many-body Schrödinger wave equation”, Comp. Phys. Commun. 146, 280‒294, (2002).
  • [22] J. Yepez, G. Vahala, and L. Vahala, “Lattice quantum algorithm for the Schrödinger wave equation in 2+1 dimensions with a demonstration by modeling soliton instabilities”, Quantum Inf. Process. 4, 457–469 (2005), doi: 10.1007/s11128-005-0008-8.
  • [23] N. Garg, H. Parthasarathy, and D.K. Upadhyay, “Real-time simulation of H-P noisy Schrödinger equation and Belavkin filter”, Quantum Inf. Process. 16, 121, (2017).
  • [24] M. Ostrowski, “Simulation of the excited state decay in the quantum register”, Prz. Elektrotechniczny 10, 167‒169, (2020).
  • [25] S. Vaintraub et al., “Simulations of β- decay of 6He in an Electrostatic Ion Trap”, https://arxiv.org/ftp/arxiv/papers/1402/1402.3978.pdf
  • [26] V. Buzek, G. Drobny, M.G. Kim, M. Havukainen, and P.L. Knight, “Numerical simulations of atomic decay in cavities and material media”, Phys. Rev. A 60(1), 582‒592 (1999).
  • [27] M. Sawerwain and J. Pilecki, “Parallel implementation of a quantum computing simulator”, J. Appl. Comp. Sci. 14(2), 79-90 (2006).
  • [28] R. Nowotniak and J. Kucharski, “GPU-based tuning of quantum-inspired genetic algorithm for a combinatorial optimization problem”, Bull. Pol. Ac.: Tech. 60(2), 323‒330 (2012).
  • [29] W. Citko and W. Sieńko, “The Feasibility of Quantum Algorithms Using Machine Learning Models”, Prz. Elektrotechniczny 9/2019, 146(2019) [in Polish].
  • [30] J.R. Tucker and T.C. Shen, “The road to a Silicon Quantum Computer”, Quantum Inf. Process. 3, 105‒113 (2005), doi:10.1007/s11128‒004‒0417‒0.
  • [31] D. Loss and D.P. DiVincenzo, “Quantum computation with quantum dots”, Phys. Rev. A. 57(1), 120–126 (1998), doi:10.1103/PhysRevA.57.120.
  • [32] J. Łuczak and B.R. Bułka, “Dynamics of a Charge Qubit Encoded in a Double Quantum Dot”, Acta Phys. Polon. A 133(3), 748‒750 (2018), doi:10.12693/APhysPolA.133.748.
  • [33] M. Twardy and D. Olszewski, “Realization of controlled NOT quantum gate via control of a two spin system”, Bull. Pol. Ac.: Tech. 61(2), 379‒390 (2013).
  • [34] M. Ostrowski, “Loading initial data into the quantum register”, XV International Conference “System Modelling and Control”, Łódź, Poland, 2013.
  • [35] L. Grover and T. Rudolph, “Creating superpositions that correspond to the efficiently integrable probability distributions”, arXiv:quant-ph/0208112 (2002).
  • [36] D. Ventura, “Learning quantum operators”, in Proceedings of the International Conference on Computational Intelligence and Neuroscience, 2000, pp. 750‒752.
  • [37] W. Salejda, M.H. Tyc, and M. Just, Algebraiczne metody rozwiazywania rownania Schrödingera, PWN, Warszawa (2002) [in Polish].
  • [38] F.L. Dubeube, “Solving the time-dependent Schrödinger equation with absorbing boundary conditions and sourceterms in Mathematica 6.0”, arXiv:1005.0044v3, (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf71d942-144b-48b5-a478-7e00c3c17059
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.