Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Tungsten diselenide (WSe2) is one of the promising transition metal dichalcogenides (TMDs) for nanoelectronics and opto-electronics. To enhance and tune the electronic performance of TMDs, chemical functionalization via covalent and van der Waals approaches has been suggested. In the present report, the electric and structural transition of WSe2 oxidized by exposure to O3 is investigated using scanning tunneling microscopy. It is demonstrated that the exposure of WSe2/high-ordered pyrolytic graphite sample to O3 induces the formation of molecular adsorbates on the surface, which enables to increase in the density of states near the valence band edge, resulting from electric structural modification of domain boundaries via exposure of atomic O. According to the work function extracted by Kelvin probe force microscopy, monolayer WSe2 with the O3 exposure results in a gradual increase in work function as the exposure to O3. Therefore, the present report demonstrates the potential pathway for the chemical functionalization of TMDs to enhance the electric performance of TMDs devices.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1469--1473
Opis fizyczny
Bibliogr. 21 poz., fot., rys.
Twórcy
autor
- Gyeongsang National University, Department of Materials Engineering and Convergence Technology, Jinju, Korea
autor
- Hanbat National University, Department of Materials Science and Engineering and Department of Materials and Manufacturing Engineering, Daejeon, Korea
autor
- Gyeongsang National University, School of Materials Science and Engineering, Jinju, Korea
autor
- Gyeongsang National University, School of Materials Science and Engineering, Jinju, Korea
autor
- Gyeongsang National University, School of Materials Science and Engineering, Jinju, Korea
autor
- Hanbat National University, Department of Materials Science and Engineering and Department of Materials and Manufacturing Engineering, Daejeon, Korea
autor
- Hanbat National University, Department of Materials Science and Engineering and Department of Materials and Manufacturing Engineering, Daejeon, Korea
autor
- Ajou University, Department of Materials Science and Engineering and Department of Energy Systems Research, Suwon, Korea
autor
- Gyeongsang National University, Department of Materials Engineering and Convergence Technology, Jinju, Korea
- Gyeongsang National University, School of Materials Science and Engineering, Jinju, Korea
Bibliografia
- [1] R.S. Chen, C.C. Tang, W.C. Shen, Y.S. Huang, Nanotechnology 25, 451706 (2014).
- [2] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnology 7, 699 (2012).
- [3] W. Zhang, M.H. Chiu, C.H. Chen, W. Chen, L.J. Li, A. T.S. Wee, ACS Nano 8, 8653 (2014).
- [4] S.L. Howell, D. Jariwala, C.C. Wu, K.S. Chen, V.K. Sangwan, J. Kang, T.J. Marks, M.C. Hersam, L.J. Lauhon, Nano Lett. 15, 2278 (2015).
- [5] W. Zhou, J. Chen, Z. Yang, J. Liu, F. Ouyang, Phys. Rev. B 99, 075160 (2019).
- [6] Q. Zhang, A.T.S. Wee, Q. Liang, X. Zhao, M. Liu, ACS Nano 15, 2165 (2021).
- [7] E. Blundo, M. Felici, T. Yildirim, G. Pettinari, D. Tedeschi, A. Miriametro, B. Liu, W. Ma, Y. Lu, A. Polimeni, Phys. Rev. Res. 2, 012024 (2020).
- [8] X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, J. Jiang, A. Pan, Y. Huang, R. Yu, X. Duan, Nano Lett. 16 264 (2016).
- [9] Z. Wang, Q. Li, Y. Chen, B. Cui, Y. Li, F. Besenbacher, M. Dong, NPG Asia Mater. 10, 703 (2018).
- [10] L. Kong, X. Zhang, Q. Tao, M. Zhang, W. Dang, Z. Li, L. Feng, L. Liao, X. Duan, Y. Liu, Nat. Commun. 11, 1 (2020).
- [11] P. Debashis, T.Y.T. Hung, Z. Chen, NPJ 2D Mater. Appl. 4, 1 (2020).
- [12] S. Yang, G. Lee, J. Kim, ACS Appl. Mater. Interfaces 13, 955 (2021).
- [13] M. Yamamoto, S. Dutta, S. Aikawa, S. Nakaharai, K. Wakabayashi, M.S. Fuhrer, K. Ueno, K. Tsukagoshi, Nano Lett. 15, 2067 (2015).
- [14] Y.C. Lin, B.M. Bersch, R. Addou, K. Xu, Q. Wang, C.M. Smyth, B. Jariwala, R.C. Walker, S.K. Fullerton-Shirey, M.J. Kim, R.M. Wallace, J.A. Robinson, Adv. Mater. Interfaces 7, 2000422 (2020).
- [15] R. Yue, Y. Nie, L.A. Walsh, R. Addou, C. Liang, N. Lu, A.T. Barton, H. Zhu, Z. Che, D. Barrera, L. Cheng, P.R. Cha, Y.J. Chabal, J.W.P. Hsu, J. Kim, M.J. Kim, L. Colombo, R.M. Wallace, K. Cho, C.L. Hinkle, 2D Mater. 4, 045019 (2017).
- [16] P. Mallet, F. Chiapello, H. Okuno, H. Boukari, M. Jamet, J.Y. Veuillen, Phys. Rev. Lett. 125, 036802 (2020).
- [17] R. Addou, C.M. Smyth, J.Y. Noh, Y.C. Lin, Y. Pan, S.M. Eichfeld, S. Fölsch, J.A. Robinson, K. Cho, R.M. Feenstra, R.M. Wallace, 2D Mater. 5, 025017 (2018).
- [18] A. Banerjee, H. Bhunia, A.J. Pal, J. Phys. D Appl. Phys. 54, 105106 (2021).
- [19] H.J. Liu, L. Jiao, L. Xie, F. Yang, J.L. Chen, W.K. Ho, C.L. Gao, J.F. Jia, X.D. Cui, M.H. Xie, 2D Mater. 2, 034004 (2015).
- [20] R.A. Ruehrwein, J.S. Hashman, J. Chem. Phys. 30, 823 (1959).
- [21] Y. Rosenwaks, R. Shikler, T. Glatzel, S. Sadewasser, Phys. Rev. B Condens. Matter. 70, 085320 (2004)
Uwagi
1. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1C1C1012209 and 2020R1A4A4079397).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf6dfc4e-a626-437a-bbf4-e4ac39d438d5