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Abstract 

In this contribution there are considered vibrations of microstructured periodic slender beams, with axial force. 
In order to analyse the effect of the microstructure size of the beams on their vibrations the tolerance modelling 

method is applied. Using this method there are derived governing equations of two tolerance models – general 

and standard, base on two various concepts – weakly-slowly-varying functions and slowly-varying functions. 
These models are applied to obtain formulas of lower order and higher order frequencies with influence of the 

axial force. To evaluate these results of the modelling the formula of lower order frequencies in the framework 

of the asymptotic model (neglecting the effect of the microstructure size) is also derived. 
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1. Preliminaries 

The subject of this note is an analysis of linear vibrations of slender periodic beams with 

axial force. The governing equation of these beams is determined by a partial differential 

equation with highly oscillating, periodic, non-continuous coefficients. This equations is 

not a good tool to investigate vibration problems. Hence, various averaged models are 

proposed to obtain substitute governing equations.  

Different mechanical problems of beams or plates with microstructure were analysed 

in a series of papers, e.g.: a homogenization with microlocal parameters was applied to 

model microperiodic plates in [1]; an asymptotic homogenization method was used to 

analyse bending of periodic beams in [2]; a certain mathematical modelling for dynamic 

stability of sandwich beams with a microstructured was proposed in [3]; torsion of a 

composite bar made of an auxetic material with a microstructure was considered in [4, 5]. 

However, the effect of the microstructure size is neglected in equations of the models. But 

this effect can play a role on the general behaviour of microstructured media, cf. [6, 7], 

where higher order vibrations related to the microstructure were analysed. Various 

analytical and numerical model were proposed for similar problems of periodic beams, 

e.g.: a differential quadrature method was used in [8, 9]; a transfer matrix method was 

considered in [10, 11]; a multi-reflection method was applied in [12]. 

In this paper, in order to take into account the effect of the microstructure in governing 

equations of the model, the tolerance averaging technique, called also the tolerance 

modelling method, is applied. This approach is used to obtain a mathematical model, 

which describes vibrations of periodic beams by partial differential equations with 

constant coefficients and allows to investigate the aforementioned effect. Applications of 

this method to different mechanical problems of microstructured media can be found in 
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monographs cf. [13-15] and in a series of works, e.g.: dynamic problems of micro-periodic 

beams were modelled in [16]; vibrations of periodic wavy-plates were considered in [17]; 

thin plates reinforced by a periodic system of stiffeners were analysed in [18]; a dynamics 

of medium-thickness periodic plates was investigated in [19]; an analysis of vibrations of 

thin periodic plates was shown in [20]; a problem of dynamic stability for micro-periodic 

cylindrical shells was presented in [21]; nonlinear vibrations of periodic beams were 

analysed in [22].  

In this work averaged governing equations of the linear tolerance model for vibrations 

of slender periodic beams with axial force are presented and applied to obtain frequencies 

of lower and higher order vibrations for simply supported beams. 

2. Foundations 

In considered slender periodic beams cross-sections and material properties can change 

periodically along their longitudinal axes.  

Let us introduce an orthogonal Cartesian coordinate system Oxyz and the axis of the 

beam Ox. Denote sizes of the cross section of the beam along z and y-axis as the height h 

and the width b, respectively. The undeformed beam occupies the region denoted by 

},2/2/,2/2/:),,{( −− xhzhbybzyx , with the beam axis , ≡[0,L]. 

Derivatives of x are denoted by ; the “basic cell” on Ox by ≡[-l/2,l/2], with l as the 

length of cell, being the period of inhomogeneity and called the microstructure parameter. 

This parameter satisfies the condition hmax<<l<<L. It is assumed that geometrical 

properties of the beam: height h(·) and width b(·) can be periodic functions in x, but 

material properties of the beam: modulus of elasticity E=E(·,y,z), mass density =(·,y,z) 

can be periodic functions in x and even functions in y, z. The deflection of the beam is 

denoted by w=w(x,t) and p be total loadings in the z-axis direction.  

Using the modelling assumptions of the slender beams theory: the kinematic 

assumption of slender beams, the strain-displacement relation, the stress-strain relation, 

the virtual work equation can be formulated. After some manipulations and introducing 

denotations for periodic functions in x – bending stiffness d(·), mass density (·), 

rotational mass inertia j(·): 
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and also for the axis force: 
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with s0 as the initial stress, the following known governing equation of slender periodic 

beams can be written: 

pwjwwnwd =−+− )()( . (3) 

Equation (3) has highly oscillating, periodic, non-continuous coefficients. 
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3. Outline of tolerance modelling procedure 

To obtain the averaged governing equations of slender periodic beams the introductory 

concepts and modelling assumptions of the tolerance modelling method are used, cf. [15]. 

Here, these concepts are mentioned: the tolerance system, a tolerance parameter, an 

averaging operator <>, a tolerance-periodic function (TP), a slowly-varying function 

(SV), a weakly-slowly-varying function (WSV), a highly oscillating function (HO), a 

fluctuation shape function (FS). Different tolerance models can be derived applying 

concepts of: the weakly-slowly-varying function or the slowly-varying function. 

Using the aforementioned concepts the modelling assumptions of the tolerance 

modelling method can be formulated. Below, these assumptions are reminded following 

the book [15] as: 

• the micro-macro decomposition of the unknown deflection of the beam in the form: 

,,,,1),,()(),(),( =+= xMAtxQxgtxWtxw AA   (4) 

with: new kinematic unknowns named the macrodeflection W(,t) and the fluctuation 

amplitudes QA(,t), being WSVtQtW A  ),(),,(  or SVtQtW A  ),(),,( , i.e. 

weakly-slowly- or slowly-varying functions; the known fluctuation shape functions gA(), 

being usually postulated a priori in the case under consideration and describing the 

unknown deflection oscillations caused by the beam periodicity; 

• the tolerance averaging approximation, where it is assumed that terms O() are 

negligibly small, e.g. for ,TPf   SVF   or WSVF , ,FSg A   in: 
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with  being the tolerance parameter;  

• the axis force restriction, where terms involving fluctuating parts of the axis force 

are assumed that can be neglected in comparing to terms with averaged parts, i.e.: 
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 (6) 

with SVN )(  and TPn )(~  being averaged and fluctuating part of axis force, 

respectively. 

After the book [15] the tolerance modelling procedure can be outlined as follows. 

In the first step the micro-macro decomposition (4) is substituted into equation (3). 

Since after this dynamic equation (3) does not hold, therefore, there should be a residual 

field r(·) within macrodynamics as follows:  

.)()(
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  (7) 

In the second step the assumption called as the residual orthogonality condition, in 

which the residual field r(·) satisfies the conditions:  

;0),(,0),( == txrgtxr B  (8) 

is used to the formula (7), together with assumptions (5), (6). 
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After some manipulations in the third step a system of equations for the 

macrodeflection W(·,t) and the fluctuation amplitudes QA(·,t), A=1,...,M, is obtained, the 

form of which is related to the specification of the class of slowly-varying functions W(·,t), 

QA(·,t) (weakly-slowly-varying or slowly-varying functions). 

4. Governing equations of models 

After applying the above modelling procedure with the concept of weakly-slowly-varying 

function and introducing the following denotations of averaged coefficients: 
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the system of equations in the form is derived: 
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which stands the governing equations of the general tolerance model of slender periodic 

beams. The basic unknowns are: the macrodeflection W and the fluctuation amplitudes 

QA, A=1,…,M, which are weakly-slowly-varying functions in x. Equations (10) have 

constant coefficients, some of which (underlined) depend on the microstructure parameter 

l. Thus, they describe the effect of the microstructure size on the overall behaviour of the 

considered beams. 

Using the above modelling procedure presented in Section 3 with the concept of 

slowly-varying function and the denotations of averaged coefficients (9), the following 

equations are obtained: 
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(11) 

They are the governing equations of the (standard) tolerance model of slender periodic 

beams. The basic unknowns of them: the macrodeflection W and the fluctuation 

amplitudes QA, A=1,…,M, are slowly-varying functions in x. Similarly to Equations (10) 

the above equations (11) have also constant coefficients, some of which depend on the 

microstructure parameter l. They allow also to analyse the effect of the microstructure size 

on the overall behaviour of the considered beams. It can be observed that Equations (11) 

can be also obtained from Equations (10) after neglecting underlined terms.  

In order to evaluate both the tolerance models the averaged model without the effect 

of the microstructure size is formulated, i.e. its governing equations have not coefficients 
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dependent on the microstructure parameter l. Equations of this model can be obtained 

using an asymptotic modelling procedure, cf. [15], or from Equations (11) after neglecting 

terms with the microstructure parameter l. These equations take the form: 
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(12) 

They represent the asymptotic model of slender periodic beams. The above equations have 

constant coefficients, similarly to Equations (10) or (11) for the tolerance models, in the 

contrast to Equation (3) with non-continuous, highly oscillating, periodic, functional 

coefficients. Moreover, they vanish the effect of the microstructure size on the overall 

behaviour of the beams.  

5. Example – free vibrations of periodic beams with axial force 

As an example a simply supported slender periodic beam is considered. It is assumed that: 

load p=0; axial force n=const; the geometrical properties of the beam – height h and width 

b are constant; the material properties – Young’s modulus E and Poisson’s ratio  are also 

constant. The periodicity of the beam is caused by the periodic distribution of its mass 

density defined as: 
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with a distribution parameter  of material properties  

The introductory concept as the fluctuation shape functions gA, A=1,…,M, play 

important role in the modelling analysis, because they describe oscillations of the beam 

deflection in the periodicity cell. Here, it is assumed only one fluctuation shape function, 

i.e. A=M=1, g=g1, in the following form related to the symmetric periodicity cell: 

])/2[sin()( 2 clxlxg += , (14) 

with the constant c calculated from the condition <g>=0. 

Hence, introducing denotations: 
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the averaged coefficients defined by (9) and different from zero for the above assumed 

properties can be written as: 
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The governing equations of the presented averaged models take the following form for 

free vibrations with an axial force: 

• the general tolerance model, (10): 
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• the standard tolerance model, (11): 
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• the asymptotic model, (12): 
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It can be observed, that the considered problem of free vibrations is described in the 

framework of the general tolerance model by the system of coupled equations (17), in the 

standard tolerance model – by uncoupled two equations (18), and in the asymptotic model 

– by only one equation (19)1. 

After introducing the wave number k (e.g. k=2/L), solutions to the above equations 

(17), (18), (19) have to satisfy the boundary conditions of a simply supported beam and 

can be assumed as:  

),cos()sin(),(),cos()sin(),( tkxAtxQtkxAtxW QW ==  (20) 

where:  is a frequency; AW and AQ are amplitudes on the unknowns. 

Substituting the solutions (20) into equations (17), (18), (19) the characteristic 

equations of free vibrations with the effect of the axial force can be derived for every 

presented above averaged model. From these characteristic equations the formulas of free 

vibration frequencies can be obtained.  

Let us introduce the following denotations: 
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and: 
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Using denotations (21) and (22) the formulas of free vibration frequencies for the 

considered beams can be written in the form: 

• for the general tolerance model:  
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where: − is the fundamental lower order free vibration frequency related to the beam 

macrostructure, + is the additional higher order free vibration frequency related to the 

beam microstructure; 

• for the standard tolerance model: 
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where:  is the fundamental lower order free vibration frequency related to the beam 

macrostructure,  is the additional higher order free vibration frequency related to the 

beam microstructure; 

• for the asymptotic model: 
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where:  is the fundamental lower order free vibration frequency related to the beam 

macrostructure. 

6. Conlusions and remarks 

Summarizing the above analytical considerations following remarks can be formulated. 

1. Using the tolerance modelling method the classic equation of slender periodic beams 

having periodic, non-continuous coefficients is replaced by the system of averaged 

equations of tolerance models with constant coefficients.  

2. A choose of the class of basic unknown functions determines the form of the model 

equations. For the weakly-slowly-varying functions the equations of the general 

tolerance model are derived, which have additional terms with the microstructure 

parameter; but for the slowly-varying functions the equations of the standard tolerance 

model are obtained. 

3. Both the tolerance models allow to investigate dynamic problems of the considered 

beams at the macro- and the micro-level, since their governing equations have terms 

describing the effect of the microstructure size. 

4. In contrast, in the framework of the asymptotic model dynamic problems of considered 

beams can be analysed only at the macro-level, without the effect of the microstructure 

size. 

5. The example allows to observe that the influence of the macrostructure appears as the 

macrovibrations (the lower order vibrations), which can be investigated within both 

the tolerance models and the asymptotic model. However, the effect of the 

microstructure is manifested as the microvibrations (the higher order vibrations) only 

in the framework of the tolerance models.  

In forthcoming papers some other applications of the equations of the general and 

standard tolerance models for the slender periodic beams will be shown. 
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