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Abstract

A mathematical model of transverse fluctuations of the pipeline straight section is considered in this article.
Such fluctuations occur during the movement of diagnostic piston in the pipeline. The analysis is based on
the method of generalized displacements. This method provides setting modes of links with distributed pa-
rameters according to the boundary conditions. Diagnostic piston is considered as a solid in the calculation
model. The equations of mechanical systems motion are derived by the Lagrange scheme equations of
the second kind. As the result, we illustrate the influence of the mechanical system parameters and the speed of
the piston on the pipeline section deflections, bending moments and stresses in the pipe.
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1. Introduction

Analysis of oscillatory phenomena in mechanical systems under the action of moving
loads is an important problem of modern dynamics of machines and structures [1-8, 10—
12]. Its practical value is explained by the need to improve methods of lifting and
transport systems calculation, mechanical transmission with flexible links, pipelines,
bridges etc. Problem solving of such systems dynamics using continuum computational
models is reduced to the integration of partial differential equations with moving bound-
ary conditions [3, 6, 10, 12]. Mathematical models in the form of integral equations are
used in studies of fluctuations of rods and filaments of variable length [7].

Building of closed analytical solutions of the equations of motion for these cases is
associated with considerable mathematical difficulties. It is only feasible for relatively
simple systems. Links of such systems have constant elastic-inertial parameters, and the
laws of motion of the boundary conditions are given. Analysis of dynamic processes in
real load carrying structures appropriate to perform with the use of mechanical sampling
units, which greatly simplifies the problem solving. Method of generalized displace-
ments [9] is quite effective. This method is based on presetting of modes of lengthy
items. It allows to describe oscillatory processes by ordinary differential equations
through the use of amplitude functions coefficients as generalized coordinates. This
approach was successfully tested in the study of the dynamics of continuum-discrete
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mechanical systems with lengthy load carrying elements. In this work, it develops on
the example of transverse fluctuations of multi-section part of the pipeline under the
influence of moving diagnostic piston.

2. Mathematical model of bending fluctuations of multi-section part of the pipeline
under the influence of moving diagnostic piston

The mechanical system that includes multi-section part of a pipeline and intelligent mov-
ing piston is shown schematically in figure 1, where / — the total length of the part; /,, /,,
..., I, — distance from the left edge of the area corresponding to the intermediate sup-
ports; my, Ji, ¢, vi (k=1, 2, ..., p) — mass, central moments of inertia, stiffness and vis-
cous friction coefficients of reference sites; m, J — mass and central moment of inertia of
the diagnostic piston; v — speed of the piston, which we assume constant; xOy — coordi-
nate system, where we analyse bending fluctuation of the pipeline; x,, — coordinate of the
mass center of the diagnostic piston. Density and modulus of elasticity of pipe material
are designated as p and F; area and the axial moment of inertia of the cross-section tube
asAand [..
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Figure 1. Diagram of the above-ground sections of the pipeline
with a moving diagnostic piston

The function, that describes the curved axis of the pipeline section, is presented in
the form

y(x,0) =Y YD)y, (x), (1
i=1

where ¢ — time; y(x,f) — deflection of the pipeline; y;(x) — shapes of oscillations, which
must be chosen so that the boundary conditions are fulfilled at the ends of sections; Yi(f)
— amplitude coefficients; n — number of degrees of mechanical system freedom, which is
equal to the number of discounted modes of pipeline.

We set depending y(x) as its own form of transverse fluctuation of rod with pinched
ends,
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where
v (x) =cosk;x—chk;x; wy,;(x)=sinkx—shkx. (3)

Results of k;/, which are calculated for lower ten own forms:

i 1 2 3 4 5 6 7 8 9 10
kil 4,730 | 7,853 | 10,996 | 14,137 | 17,279 | 20,420 | 23,562 | 26,704 | 29,846 | 32,989

Taking the generalized coordinate values Y(¢) (i =1, 2, ..., n), we apply the Lagrange
equations of the second kind to describe the motion of a mechanical system,

d(aTj oT o o

—| = — =0, (@
di\oq;, ) oq;, oq, 04

Il
Ju—
N

S
-

“4)

where T and II — kinetic and potential energies; g; — generalized coordinate; ® — Ray-
leigh function; O; — non-conservative generalized force.
The kinetic energy is written in the form of
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The potential energy of pipe section deformation is expressed as

- £ I(MJ a2 3 el 0] (6)
k=1
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Rayleigh function, which is used to calculate the energy dissipation of fluctuations
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where v — coefficient of hysteresis material deviation from Hooke's law.
Considering the relationships (1), we summarize the expressions (5) — (7) to the fol-
lowing form

=2 I{ZYU) v, (x)} dx+ Pl I{ZY(t) v, (x)} dx +

oLi=1 oLi=1

2
+% [v<r>]2{v(r)Zn(t)-w,-'(meZz(o-wi(xm)} +
i=1
+§[v(r>ix(r>-w,-"(xm>+iﬁ(r>-w,-'(xm)} .
%imlc[i)}i(t)uli(lk)} +%i‘]k|:i)}i(t)\v;(lk):| ;
k=1 i=1 k=1 i=1

n=%ﬂ§"“y(1) " (x)} di +— ch[ZY(t)w( )T

1

AL {ifﬁ(f)-\vi"(x)} dx+%iv{if’,(t)w,(lk)} : (8)

oL i=l

We transform relationships (8) to a suitable form for the equations of mechanical sys-
tem motion,
n n n n
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where
l l ’ ’ l n ”
ay = [w v (0dv s by =y, (D, (Ddx; ey =y, (v (¥)dx;
0 0 0

amij = \Vi(xm)\uj(xm) 5 bmtj =V; (xm)\'/j (xm) ; Cmij =V; (xm )\VJ (xm) 5
dmij =V; (xm )\V/(xm) 5 emij =V; (xm )\VJ (xm) 5

Ay :\Vi(lk)\ljj(lk); bkij =Wi,(lk)\l/j,(lk)‘ (10)

Differentiating the expression (9) and substituting the obtained results to the equali-
ty (4)

AY +BY +CY =0, (11)

where Y — matrix-column of generalized coordinates,
Y =col[t,(1), Y5 (1),....Y, ()] ;

A, B, C — square matrices,

k=1

P P
A; =pAa; +pl.b; + ma,,; +Yb,, + z (mkaw + kak,j), B, =vlc, + zvkak{/‘ ’
k=1

P
2
+Ye,;)— [N(t)] (mb; +Yc,,)+El c, + ZCkak{.f ;

k=1

C, = v(t)(md

mij

O — matrix-column of generalized forces,

0 =c0l[0,,0,.....0,].

To determine the generalized forces of the system, we write the vertical movement of
the gravity center of the diagnostic piston as

Y1) = D YW (x,,). (12)
i=1

Virtual work of weight force of piston follows the relationship
04 =mg-dy(x,,,t), (13)
where 0y(x,,, t) — virtual displacement, which is found with considering (12),

n a X ’t n
(0= L5y, = 3y 5,067, (149
i=1 i i=1
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moreover, 6Y; (i =1, 2, ..., n) — variations of the generalized coordinates.
With taking into account (13), (14) write the virtual work as

84 =mgy v;(x,)8Y, =D 0,3, . (15)
i=1 i=1

As follows from the relationship (15), generalized forces are defined by the depend-
encies

Qi = mgWi(xIn) . (16)

Thus, the non-stationary bending vibration of the aboveground pipeline section under
the moving diagnostic piston are described by the differential equations (11), solution of
which perform with consideration the expressions of the generalized forces (16) and
the corresponding initial conditions. If at # = 0 the mechanical system is at resting state,
then the value of the generalized coordinates and their time derivative are equal to zero,
ie.,

Y,(0)=0; ¥V, (0)=Y,(0)=0 (i=1,2,...,n). (17)

For the application of the widespread software for solving this task, transform
the system of differential equations (11) to the normal form of the Cauchy:

X =D(t,x), (18)
where X, D(t, x) — matrix-column,

X =col(Y,V);
D(t,x) = colly, 4™ (~BV —CY + Q)]

Thus, the analysis of dynamic phenomena in the mechanical system reduces to
the solving the Cauchy problem for a system of 2n differential equations (18) with taking
into account the dependencies for determination the modes of the pipeline section (2),
(3), the generalized forces (16) and the initial conditions (17). After finding the general-
ized coordinates Y{(?) (i = 1, 2, ..., n) determine pipeline section deflection by the formu-
la (1) and bending moments — by the ratio

n
M (x,t)=EI Y Y () y}(x), (19)
i=1
which follows directly from the theory of technical bending.
Taking into account dependencies (19), the maximum bending stress in the cross sec-
tion of the pipeline is calculated as
M(x,t) Ed Y
——==—) Y,(t)-vi(x),
g 2SOV

z

o(x,t) =

where W, and d — the resistance moment and the outer diameter of tube cross-section.
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3. The calculation results of the dynamic processes and their analysis

The dynamic phenomenas in the multi-section straight pipeline area with a length of 47
m, an outer diameter of 529 mm and a wall thickness of 10 mm during the passage of
the diagnostic piston with mass of 1200 kg at a speed of 5 m/s illustrate the graphical
dependencies on the Fig. 2.
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Figure 2. The dependencies of deflections (a) and bending moments (b) from
the longitudinal coordinates of the pipeline section. Curves 1-9 correspond to the time
points: 0,94 s; 1,88 s; 2,82 s; 3,76 s; 4,7 8; 5,64 5; 6,58 5; 7,52 5; 8,46 s

During the calculation accept that the ends of the pipeline sections are strangulated,
in addition, the pipe is based on five intermediate pillars with coordinates /; = 7.833 m; /,
= 15.667 m; I; = 23.500 m; /, = 31.333 m; /s = 39.167 m. The supporting nodes have
equal masses m; = 200 kg, moments of inertia J; = 12 kg-m2, stiffness ¢; = 2:10°N/m and
the friction coefficients v; = 2:10° Ns/m, where i = 1, 2, ..., 5. Curves 1, 2, ..., 9 in Fig. 2
correspond to the time points when the diagnostic piston has passed the way 0,1 /; 0,2 /;
3091

The greatest deflection value of 18.613 mm has the point on the axis of the pipe with
coordinate x = 23.400 m at the time moment ¢ = 4,675 s. Significant bending moments
that may affect on the strength of the pipeline, arise as in outer cross sections of the area,
as well as in cross sections located in the middle of the area. The largest absolute value
of the bending moment was 43.814 kN-m and appeared in cross section with coordinate
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x =47 m at the time ¢ = 8,016 s. The maximum bending stress reached value of 21.102
MPa. Note that in the absence of intermediate pillars maximum deflection is 55.944 mm,
the maximum absolute value of the bending moment — 83.343 kN-'m, the maximum
stress — 40.139 MPa. Thus, the installation of the intermediate pillars contributes signifi-
cantly on stress and strain reducing of the aboveground sections of the pipelines.

The built mathematical model of the bending vibration of the multi-section construc-
tions makes it possible to choose required number of the intermediate pillars and rational
values of their stiffness during the design of the aboveground pipeline sections for ensur-
ing the strength of the pipe and supporting constructions. In the operation of the built
pipelines proposed calculation algorithm can be used to determine the permissible speed
of the diagnostic piston.
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