PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On Nörlund summation and ergodic theory, with applications to power series of Hilbert contractions

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We show that if a = (an)n∈N is a good weight for the dominated weighted ergodic theorem in Lp, p > 1, then the Nörlund matrix Na = {ai−j / Ai}0≤j≤i, Ai = ∑ik=0|ak|, is bounded on ℓp(N). We study the regularity (convergence in norm and almost everywhere) of operators in ergodic theory: power series of Hilbert contractions and power series ∑n∈N an Pn f of L2-contractions, and establish similar close relations to the Nörlund operator associated to the modulus coefficient sequence (|an|)n∈N.
Rocznik
Strony
69--85
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
  • Institut de Sciences Exactes et Appliquées, Université de la Nouvelle Calédonie, B.P. 4477, F-98847 Noumea Cedex
autor
  • IRMA, 10 rue du Général Zimmer, 67084 Strasbourg Cedex, France
Bibliografia
  • [1] G. Alexits, Convergence Problems of Orthogonal Series, Int. Ser. Monogr. Pure Appl. Math. 20, Pergamon Press, New York, 1961.
  • [2] C. Arhancet and C. Le Merdy, Dilation of Ritt operators on Lp-spaces, Israel J. Math. 201 (2014), 373-414.
  • [3] A. Bellow and V. Losert, The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences, Trans. Amer. Math. Soc. 288 (1985), 307-345.
  • [4] G. Bennett, Inequalities complimentary to Hardy, Quart. J. Math. 49 (1998), 395-432.
  • [5] D. Borwein, Nörlund operators on lp, Canad. Math. Bull. 36 (1993), 8-14.
  • [6] D. Borwein and F. P. Cass, Nörlund matrices as bounded operators on lp, Arch. Math. (Basel) 42 (1984), 464-469.
  • [7] J. Bourgain, An approach to pointwise ergodic theorems, in: Geometric Aspects of Functional Analysis (1986/87), Lecture Notes in Math. 1317, Springer, Berlin, 1988, 204-223.
  • [8] J. Bourgain, Temps de retour pour les systèmes dynamiques, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 483-485.
  • [9] J. Bourgain, Pointwise ergodic theorems for arithmetic sets (with an appendix by the author, H. Furstenberg, Y. Katznelson and D. S. Ornstein), Inst. Hautes Études Sci. Publ. Math. 69 (1989), 5-45.
  • [10] G. Cohen, C. Cuny and M. Lin, Almost everywhere convergence of powers of some positive Lp contractions, J. Math. Anal. Appl. 420 (2014), 1129-1153.
  • [11] G. Cohen, C. Cuny and M. Lin, On convergence of power series of Lp contractions, in: Études opératorielles, Banach Center Publ. 112, Inst. Math., Polish Acad. Sci., Warszawa, 2017, 53-86.
  • [12] G. Cohen and M. Lin, Extensions of the Menchoff-Rademacher theorem with applications to ergodic theory, Israel J. Math. 148 (2005), 41-86.
  • [13] C. Cuny, Pointwise ergodic theorems with rate with applications to limit theorems for stationary processes, Stoch. Dynam. 11 (2011), 135-155.
  • [14] C. Cuny, Norm convergence of some power series of operators in Lp with applications in ergodic theory, Studia Math. 200 (2010), 1-29.
  • [15] C. Cuny, Almost everywhere convergence of generalized ergodic transforms for invertible power-bounded operators in Lp, Colloq. Math. 124 (2011), 61-77.
  • [16] C. Cuny and M. Lin, Limit theorems for Markov chains by the symmetrization method, J. Math. Anal. Appl. 434 (2016), 52-83.
  • [17] C. Cuny and M. Weber, Ergodic theorems with arithmetical weights, Israel J. Math. 217 (2017), 139-180.
  • [18] B. Delyon and F. Delyon, Generalization of von Neumann’s spectral sets and integral representation of operators, Bull. Soc. Math. France 127 (1999), 25-41.
  • [19] C. Demeter, Improved range in the return times theorem, Canad. Math. Bull. 55 (2012), 708-722.
  • [20] C. Demeter, M. Lacey, T. Tao and C. Thiele, Breaking the duality in the return Times theorem, Duke Math. J. 143 (2008), 281-355.
  • [21] Y. Derriennic and M. Lin, Fractional Poisson equations and ergodic theorems for fractional coboundaries, Israel J. Math. 123 (2001), 93-130.
  • [22] V. F. Gaposhkin, Criteria for the strong law of large numbers for classes of stationary processes and homogeneous random fields, Dokl. Akad. Nauk SSSR 223 (1975), 1044-1047 (in Russian).
  • [23] V. F. Gaposhkin, Spectral criteria for existence of generalized ergodic transforms, Theory Probab. Appl. 41 (1996), 247-264; translation from Teor. Veroyatn. Primen. 41 (1996), 251-271.
  • [24] C. Le Merdy, H∞ functional calculus and square function estimates for Ritt operators, Rev. Mat. Iberoamer. 30 (2014), 1149-1190.
  • [25] B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, and Akadémiai Kiadó, Budapest, 1970.
  • [26] J. J. Schäffer, On unitary dilations of contractions, Proc. Amer. Math. Soc. 6 (1955), 322.
  • [27] M. Peligrad and S. Utev, A new maximal inequality and invariance principle for stationary sequences, Ann. Probab. 33 (2005), 798-815.
  • [28] D. Volný, Martingale-coboundary representation for stationary random fields, Stoch. Dynam. 18 (2018), 1850011, 18 pp.
  • [29] M. Weber, Dynamical Systems and Processes, IRMA Lectures in Math. Theoret. Phys. 14, Eur. Math. Soc., Zürich, 2009.
  • [30] M. Wierdl, Pointwise ergodic theorem along the prime numbers, Israel J. Math. 64 (1988), 315-336.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf5cd23b-274f-4563-878d-5a0f07e8382e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.