SSARS 2008
Summer Safety and Reliability Semindise 22-282008 Gdaisk-SopagtPoland

Grabski Franciszek

Zateska-Fornal Agata
Naval University, Gdynia, Poland

Applications of bootstrap and resampling methods irempirical Bayes
estimation of reliability parameters

Keywords
bootstrap method, method, estimate, bootstrapcapk

Abstract

Bootstrap and resampling methods are the compoétihhods used in applied statistics. It is a typdMonte
Carlo method based on observed data. Bradley Hfestribed it in 1979 and he has written a lot alibat
method and its generalizations since then. Her@ppdy these methods in an empirical Bayes estimaiging
bootstrap or resampling copies of the data to ntgaiempirical prior distribution.

1. Introduction of data X, = (X, X,,...,X,). The bootstrap copies of

The bootstrap is a data-based method of simuléion ~ data  are the values* of  the random vectors
assessing statistical accuracy. The term bootstrap X5 =(X;®,XX? ... X;®), b=12,....B, which

derives from the phraséo pull oneself up by one’s  are called thévootstrap samplesthe function F, ()
bootstrap’ which can be found in the eighteenth n

The method was proposed by Efron. The main goal of random variables<;® , X{*, .. X ®,
the bootstrap method is a computer-based fulfiliig If we have vector of the observation

basic statistical ideas. X, = (%, X,,....X,) of size n, we can define the

2. Bootstrap and resampling copies of the data empirical cumulative distribution functioR as

Suppose we observe independent data . #{x 1% <%

pointsx,, X,,....X,, which we denoted as a vector F(%X,)= -
X, = (X, X,,...,X,,) . This vector is a value of random

vector X, =(X;,X,,...X,), where the random thatis equivalent to the discrete distribution
variables X, X,,...,X,, are mutually independent and

identically distributed (i.i.d.) with probability P, :n_k, k=12...1,

cumulative distribution functior,([) , wheregd 0O n

is true but unknown parameter. Suppose that we are
able to estimate this parameter by using estimator

8, =T(X,). A numberd, =T(x,) is its value. After n =#i X =X} .
that we can use a distributioR; () to simulate so-

where

This distribution can be expressed as a vector of
frequenciesp =(py, P,....Py) -
x;‘b) - (x;(b),x;(b),...,x;(b)), b=12...B Vectors of the data

calledbootstrap copies
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X =0 x5 ,Lx ™), r=12,....,R

coming from the distributiorif(x; X) are said to be

resampling copiesf the datax, = (X, X,,...,X;) . In

other words a resampling copy, = (X;, X3,...,

the data x,=(X,X,,....X,) IS generated by
randomly samplingn—times with replacement from
the original data pointsx, =(X;,X,,...,X,). The
randomly sampling means the random choice of an
element amongx, X,,...,X, in each ofndrawings.

n

X;) of

The resampling copy of the data, = (X, X,,...,X,)
is composed of the elements of the original sample,

Let X; =(X;,X5,,...,X;) be a bootstrap sample for
the given vector of dat&,, = (X, X,,...,X;,) -

A random variable ®, =T(X) is said to be a
bootstrap estimator of the parameger

A random  variable 0, =T(X,),
X, =(X],X5,...,X,) is called
estimator of the parameté

where

a resampling

The distribution of the statlstloeD —9 and 0,

for the bootstrap sample with the fixed data value
X1 Xp,..,X, IS close to the distribution of the

n

statlstlcse -4.

some of them can be taken zero times, some of themFrom that rule it follows that the shapes of the

can be taken ones or twice etc. Notice that in the
resampling copy X, =(X{,Xs,...,X;), the elements
are repeated as a rule.

The typical number of the bootstrap or

resampling copies of the da® range from 50 to
1000.

3. Bootstrap and resampling estimators

There is given a following situation: a random s&mp
X, = (X, Xp,...,X,) has been observed from an

unknown probability distributionF()=F,(), € 0O
and our interest is to estimate a true parangetethat

satisfies equatior® ='F(F). The estimate (the value

of the estimator)é of the parameteid satisfies the
equation

)2

Let us consider, as an example, an estimation ef th
expectation

6 =m= [, xdF(X).

An estimate of this parameter is a number

6=x =g F(xx)——Zx

Ni=1

that is the value of a statistics
~ _ ~ l n
=T(X) =X = [ xdF (xX) ==X,
i=1

Similarly the standard deviation and the quintéesl
their estimates have the required representation.
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distributions of the statisticsﬂf,ﬂ;,én are similar.

To obtain an empirical distribution of the random

variable 8, we have to simulate bootstrap copies
X = (x® P, x P, b=12,....,.B

of datax, = (X, X,,...,
values of statistics

X,) . After that we calculate the

6 =7(x?), b=12,....B

We can use a nonparametric kernel estimator tarobta
the estimate of the probability density of the Istraip

estimate of@!. The value of this estimator with the
Gaussian kernel is given by

. 18 (9-6°
N=—Y K|l —

9(2) Bho=1 { h

where
. 2

K(ﬂ)zﬁe 2 90(-, »),
and

h=106sB™%?,

s —standard deviation ™, b=12,.....B
The above-mentioned consideration can be presented
on the following diagram:



SSARS 2008
Summer Safety and Reliability Semindise 22-282008 Gdaisk-SopagtPoland

X > g° estim
. . ate of
distri
F9 .| butio
"l n
: of 9
xB » g°

Figure 1 Diagram illustrating the realization of the
bootstrap method.

4. The bootstrap estimate of the standard
error

The bootstrap replication of the statistics values
o =T(x™), b=12,....,.B 2)
correspond to the bootstrap data

X;(b) = (Xi(b) ’ X;(b) ""IX:I(b))’ b = 1’2”B

The bootstrap estimate of the standard errof ois
defined by the following formula

: ©)

The bootstrap algorithm for estimating standardrsrr
goes as follows:
- get B independent bootstrap samples

X:](b) = (Xi(b) ’ X;(b) !'--1X:1(b))1 b: 1’2"""B

for estimating a standard error, (the number &f
should be in the range 30-200).

5. Empirical Bayes estimation

The recent works dealing with the empirical Bayes
estimation have been stimulated by the work of
Robbins (1955), although early examples of the
empirical Bayes approach are given by Von Mises
(1942) and Von Neuman (1946).

Let fo(x) be a density function of a random variable

X with an unknown parameteg 0 o It is well
known that the value of the Bayes estimaiy of

the parameterd under the squared-loss function is
an expectation in posterior distribution

_Jo6f4(x)9(6)dv(6)

% = O 0 a@an@)

where f,(x) =1(x;8) is a likelihood function and’
denotes a discrete counting measure or the Lebesgue
measure andg(d) is a prior density function of the
parameter with respect to the measure If g is a
value of a sufficient statistics for the parametér

then the value of the Bayes estimatotéB of the
parameteré is

_1.07(619)9(6)dv(6)

8, = E(0]6) ==
° o T (816)a(6)dv(6)

We suppose that a prior density function of the
parameter mentioned above is unknown. In classical
empirical Bayesian procedure a prior distributian i
assessed from theast daa. Very often the only date

we have is the small sample = (X, X,,...,X,). In
those cases instead of the past data, we can use
vectors

X;(b) = (X;(b) , X;(b) ,...,X:](b)), b=12,...B,

that are the values of theootstrap samplesr the
resampling copiesf the data

X:](r) :(Xlo(b),X;(r),...,X:](r)), r=12,.....R.

- compute the bootstrap replication correspond each The resampling copies are generated independently

bootstrap sample,
o) = 17 (x{"), b=1.2,.., B

- compute the standard erroge,by the sample
standard deviation oB replications according to (3).
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from the empirical distribution corresponding to an
unknown distributionF (x| &) of a random variablX

denoting (for example) time to failure. The bt
copies are generated from the distributgn(l),

where énzT(xn). To estimate the unknown

parameter 8 we have to calculate the values of the
sufficient bootstrap statistics
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a likelihood function for the vector of data
0" =T(x®™), b=12,...,B X = (X, Xge0s%g) IS

or the resampling statistics -% (g + %)

f(x|H)=I(X:5’)=H—1ne
eg(f) =T(X:1(r)), r=12,.....R

N _ A value of the maximuntikelihood estimator of@ is
of that one. As a empirical prior we propose a 3 value of a sufficient statistics

discrete density function

m : 6= -
9(6) :FIJ(Q’ g,"), n
i0{jy, 0yt O{L....m, mMm=B Hence, the function (5), we can replace with a
function
where
~ - 1 -
. — 4
m =#{k: 6% =40} 1(616)=4e
denotes the number of observations equaﬂﬂﬂ’ ) In the next step we generate the bootstrap sample
_ 1 for 9=V X0 = (x> xRy k=12,...,m
30.6,) = 0 for 8% enEti)
or n and calculate the values of the bootstrap sufficie
statistics
and o o o
gn[(l) — Xl(l) + Xz(l)y-..,xn(l) , i :lz’...,m
m= Zivilmji n

) ) o From (4) we obtain, a value of the bootstrap erogiri
Notice that a prior distribution is constructed the Bayes estimator of a mean time to failéte E(X) :
basis on the bootstrap samples. Since

~ ~ né
5 A _XLmet(016," w v
Gy =E(49|49)=Z"1m ' (A | ) ) 4) i=17A*mn_1e g'
ZLm f(016,") 5o (@)
5~ b
is a value of the bootstrap empirical Bayes estim ﬂl&e 4
6. Example

By repetition we can obtain a sequence of values of
Bayes estimator that we can use to construct its
empirical distribution.

Suppose that we wish to estimate a mean time to
failure E(X) =46 in the exponential distribution given

by pdf
. 7. Conclusions
f(x|6)=le_gx, x=0, 6>0. There is possibility to apply the bootstrap and
g resampling methods in an empirical Bayes
) o o estimation. The bootstrap and resampling copies of
In this case a likelihood function is the data are used to construct an empirical prior
. distribution.
F(x]6) =1 (x: 6)_ie-§ (g +.+%)
S T gn 5)
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