PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The characterization of the stress fields near a crack tip for a compact specimen for elastic-plastic materials dominated by the plane strain state

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a comprehensive analysis of the stress field near a crack tip for a compact specimen dominated by the plane strain state using the finite element method. The analysis also includes the calculation of some parameters of in-plane constraints, both for small and large strain assumptions. It discusses the influence of the material characteristic, relative crack length and external load for the stress field, and the in-plane constraint parameter. The approximation formulas for some in-plane constraint parameters are presented.
Rocznik
Strony
549--576
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
autor
  • Kielce University and Technology Faculty of Mechatronics and Mechanical Engineering Department of Manufacturing Engineering and Metrology Al. 1000-lecia PP 7, 25-314 Kielce, POLAND
Bibliografia
  • [1] ASTM (2005): ASTM E 1820-05 Standard Test Method for Measurement of Fracture Toughness. American Society for Testing and Materials.
  • [2] ASTM (2011): ASTM E1921-11 Standard test method for determining of reference temperature T0 for ferritic steels in the transition range. American Society for Testing and Materials.
  • [3] BS 5762 (1979): Methods for crack opening displacement (COD) testing. London: British Standards Institute.
  • [4] BS 7448 (1991): Part 1. Fracture mechanics toughness tests: Part 1 – Method for determining of KIc, critical CTOD and critical J values of metallic materials. London: British Standards Institute.
  • [5] PN-87/H-4335, Metals – Test method for measurement of the fracture toughness for plane strain conditions.
  • [6] Kornev V.M. and Demeshkin A.G. (2018): Quasi-brittle fracture of compact specimens with sharp notches and ushaped cuts. – Journal of Applied Mechanics and Technical Physics, vol.59, No.1, pp.120-131, DOI 10.1134/S0021894418010157.
  • [7] Kayamori Y. and Kawabata T. (2017): Evaluation of rotational deformation in compact specimens for CTOD fracture toughness testing. Procedia Structural Integrity, vol.5, pp.286-293 DOI 10.1016/j.prostr.2017.07.135.
  • [8] Doddamani S. and Kaleemulla M. (2017): Fracture toughness investigations of Al6061-graphite particulate composite using compact specimens Frattura ed Integrità Strutturale, vol.11, No.41, pp.484-490, DOI 10.3221/IGF-ESIS.41.60.
  • [9] Horstman R.T., Lieb K.C., Power B., Landes J.D., et al. (1979): Evaluation of the J integral for the compact specimen. – Journal of Testing and Evaluation, vol.7, No.5, pp.264-269. DOI 10.1520/JTE10222J.
  • [10] Shivakumar N. and Newman J.C. (1992): Verification of effective thicknesses for side-grooved compact specimens. – Engineering Fracture Mechanics 43(2), 1992, DOI 10.1016/0013-7944(92)90125-X, Source NTRS.
  • [11] Hu J.M., Cheng J., Albrecht P. and Joyce J. (1989): Ductile Crack Extension in Compact Specimens at Limit Load. – DOI 10.1016/B978-0-08-034341-9.50047-4, In book: Proceedings of The 7th International Conference On Fracture (ICF7).
  • [12] Zhu X.-K. and Joyce J.A. (2012): Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization. – Engineering Fracture Mechanics, vol.85, pp.1–46, DOI:10.1016/j.engfracmech.2012.02.001.
  • [13] O’Dowd N.P. and Shih C.F. (1991): Family of crack-tip fields characterized by a triaxiality parameter – I. Structure of Fields. – J. Mech. Phys. Solids, vol.39, No.8, pp.989-1015.
  • [14] O’Dowd N.P. and Shih C.F. (1992): Family of crack-tip fields characterized by a triaxiality parameter – II. Fracture Applications. – J. Mech. Phys. Solids, vol.40, No.5, pp.939-963.
  • [15] Yang S., Chao Y.J. and Sutton M.A. (1993): Higher order asymptotic crack tip fields in a power-law hardening material. – Engineering Fracture Mechanics, vol.19, No.1, pp.1-20.
  • [16] Hutchinson J.W. (1968): Singular behaviour at the end of a tensile crack in a hardening material. – Journal of the Mechanics and Physics of Solids, vol.16, No.1, pp.13-31.
  • [17] Rice J.R. and Rosengren G.F. (1968): Plane strain deformation near a crack tip in a power-law hardening material. – Journal of the Mechanics and Physics of Solids, vol.16, No.1, pp.1-12.
  • [18] Neimitz A., Graba M. and Gałkiewicz J. (2007): An alternative formulation of the Ritchie-Knott-Rice local fracture criterion. – Engineering Fracture Mechanics, vol.74, pp.1308-1322.
  • [19] Ritchie R.O., Knott J.F., Rice J.R. (1973): On the relationship between critical tensile stress and fracture toughness in mild steel. – Journal of the Mechanics and Physics of Solids, vol.21, pp.395–410.
  • [20] Graba M. and Gałkiewicz J. (2007): Influence of the crack tip model on results of the finite element method. – Journal of Theoretical and Applied Mechanics, Warsaw, vol.45, No.2, pp.225-237.
  • [21] Graba M. (2011): The influence of material properties and crack length on the Q-stress value near the crack tip for elastic-plastic materials for single edge notch plate in tension. – Archives of Civil and Mechanical Engineering, vol.11, No.2, pp.301-319.
  • [22] Graba M. (2012): The influence of material properties and crack length on the Q-stress value near the crack tip for elastic-plastic materials for centrally cracked plate in tension. – J. Theor. Appl. Mech., vol.50, No.1, pp.23-46.
  • [23] Graba M. (2008): The influence of material properties on the Q-stress value near the crack tip for elastic-plastic materials. – Journal of Theoretical and Applied Mechanics, vol.46, No.2, pp.269-290.
  • [24] Graba M. (2012): Catalogue of the numerical solutions for SEN(B) specimen assuming the large strain formulation and plane strain condition. – Archives of Civil and Mechanical Engineering, Published by Elsevier, vol.12, No.1, pp.29-40.
  • [25] FITNET Report, (European Fitness-for-service Network), Edited by Kocak M., Webster S., Janosch J.J., Ainsworth R.A. and Koers R., Contract No. G1RT-CT-2001-05071, 2006.
  • [26] Neimitz A., Dzioba I., Graba M. and Okrajni J. (2008): The assessment of the strength and safety of the operation high temperature components containing crack. – Kielce University of Technology Publishing House, Kielce.
  • [27] Gałkiewicz J. and Graba M. (2006): Algorithm for determination […] functions in Hutchinson-Rice-Rosengren solution and its 3D generalization. – Journal of Theoretical and Applied Mechanics, vol.44, No.1 pp.19-30.
  • [28] Kumar V., German M.D. and Shih C.F. (1981): An engineering approach for elastic-plastic fracture analysis. – Electric Power Research Institute, Inc. Palo Alto, CA, EPRI Report NP-1931.
  • [29] ADINA 8.8, ADINA (2011): User Interface Command Reference Manual – Volume I: ADINA Solids & Structures Model Definition. – Report ARD 11-2, ADINA R&D, Inc.
  • [30] ADINA 8.8, ADINA (2011): Theory and Modeling Guide – Volume I: ADINA Solids & Structures. – Report ARD 11-8, ADINA R&D, Inc.
  • [31] Sumpter J.D.G. and Forbes A.T. (1992): Constraint Based Analysis of Shallow Cracks in Mild Steel. – TWI/EWI/IS International Conference on Shallow Crack Fracture Mechanics Test and Application, M.G. Dawes, Ed., Cambridge, UK, paper 7.
  • [32] Guo W. (1995): Elastoplastic Three Dimensional Crack Border Field – III. Fracture Parameters. – Engineering Fracture Mechanics, vol.51, No.1, pp.51-71.
  • [33] Chauhan S., Chattopadhyay J. and Dutta B. K. (2016): Limit load equations for miniature single edge notched tensile specimens. – Transactions of the Indian Institute of Metals, vol.69, No.2, pp.641-646.
  • [34] Graba M. (2013): Numerical verification of the limit load solutions for single edge notch specimen in tension. – Archives of Civil and Mechanical Engineering, vol.13, No.1, pp.45-56.
  • [35] Graba M. (2016): Limit load solutions for SEN(T) specimens - 2D and 3D. – International Journal of Applied Mechanics and Engineering, vol.21, No.3, pp.569-580.
  • [36] Anderson T.L. (2000): Fracture Mechanics - Fundamentals and Applications. – CRC Press, Corporate Blvd., N.W., Boca Raton, Florida 33431.
  • [37] Kudari S.K., Maiti B. and Ray K.K. (2007): The effect of specimen geometry on plastic zone size: A study using the J integral. – The Journal of Strain Analysis for Engineering Design, vol.42, No.3, pp.125-136. https://doi.org/10.1243/03093247JSA252.
  • [38] Rice J.R. (1968): A path independent integral and the approximate analysis of strain concentration by notches and cracks. – Journal of Applied Mechanics, vol.35, pp.379-386.
  • [39] Seweryn A. (2003): Numerical methods in fracture mechanics. – Biblioteka Mechaniki Stosowanej, IPPT PAN, Warszawa (in Polish).
  • [40] Graba M. (2012): Selected fracture criteria of elastic-plastic materials. – Mechanical Review, No.12/2017, pp.24-31 (in Polish).
  • [41] Graba M. (2013): Extension of the concept of limit loads for 3D cases for a centrally cracked plate in tension. – Journal of Theoretical and Applied Mechanics, vol.51, No.2, pp.349-362.
  • [42] R6 procedures (1997): Assessment of the integrity of structures containing defects. – Nuclear Electric-R6 Manuals, Nuclear Electric Ltd, Barnett Way, Barnwood, Gloucester GL4 3RS, United Kingdom.
  • [43] BS 7910:2013+A1:2015, Guide to methods for assessing the acceptability of flaws in metallic structures. – Published by BSI Standards Limited 2015, ISBN 978 0 580 895647.
  • [44] Zhu X.-K. and Leis B.N. (2006): Bending modified J-Q theory and crack-tip constraint quantification. – Int. J. Fract., vol.141, No.1-2, pp.115-134.
  • [45] Tkach Y. and Burdekin F.M. (2012): A three-dimensional analysis of fracture mechanics test pieces of different geometries – Part 1 Stress-state ahead of the crack tip. – International Journal of Pressure Vessels and Piping, pp.93-94:42-50.
  • [46] Tkach Y. and Burdekin F.M. (2012): A three-dimensional analysis of fracture mechanics test pieces of different geometries – Part 2 Constraint and material variations. – International Journal of Pressure Vessels and Piping, pp.93-94:51-60.
  • [47] Mostafavi M., Smith D.J. and Pavier M.J. (2010): Reduction of measured toughness due to out-of-plane constraint in ductile fracture of aluminium alloy specimens. – Fatigue Fract. Eng. Mater Struct., vol.33, pp.724-739.
  • [48] Mostafavi M., Smith D.J. and Pavier M.J. (2011): Fracture of aluminium alloy 2024 under biaxial and triaxial loading. – Eng. Fract. Mech., vol.78, pp.1705-1716.
  • [49] Yang J., Wang G.Z., Xuan F.Z. and Tu S.T. (2013): Unified characterisation of in-plane and out-of-plane constraint based on crack-tip equivalent plastic strain. – Fatigue Fract. Eng. Mater. Struct., vol.36, pp.504-514.
  • [50] Mu M.Y., Wang G.Z., Xuan F.Z. and Tu S.T. (2017): Fracture assessment based on unified constraint parametr for pressurized pipes with circumferential surface cracks. – Eng. Fract. Mech., vol.175, pp.201-218.
  • [51] Xu J.Y., Wang G.Z., Xuan F.Z. and Tu S.T. (2018): Unified constraint parameter based on crack-tip opening displacement. – Eng. Fract. Mech., vol.200, pp.175-188.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf569bd0-dac4-4c52-bc74-058d0bfc304c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.