PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of water treatment plants quality in Basrah Province, by factor and cluster analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Shatt Al Arab River (SAAR) is a major source of raw water for most water treatment plants (WTP’s) located along with it in Basrah province. This study aims to determine the effects of different variables on water quality of the SAAR, using multivariate statistical analysis. Seventeen variables were measured in nine WTP’s during 2017, these sites are Al Hussain (1), Awaissan (2), Al Abass (3), Al Garma (4), Mhaigran (5), Al Asmaee (6), Al Jubaila (7), Al Baradia (8), Al Lebani (9). The dataset is treated using principal component analysis (PCA) / factor analysis (FA), cluster analysis (CA) to the most important factors affecting water quality, sources of contamination and the suitability of water for drinking and irrigation. Three factors are responsible for the data structure representing 88.86% of the total variance in the dataset. CA shows three different groups of similarity between the sampling stations, in which station 5 (Mhaigran) is more contaminated than others, while station 3 (Al Abass) and 6 (Al Asmaee) are less contaminated. Electrical conductivity (EC) and sodium adsorption ratio (SAR) are plotted on Richard diagram. It is shown that the samples of water of Mhaigran are located in the class of C4-S3 of very high salinity and sodium, water samples of Al Abass station, are located in the class of C3-S1 of high salinity and low sodium, and others are located in the class of C4-S2 of high salinity and medium sodium. Generally, the results of most water quality parameters reveal that SAAR is not within the permissible levels of drinking and irrigation.
Wydawca
Rocznik
Tom
Strony
10--19
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • The University of Basrah, Engineering College, Civil Engineering Department, Basrah 61004,Iraq
  • The University of Basrah, Engineering College, Civil Engineering Department, Basrah 61004,Iraq
Bibliografia
  • ABBASI S.A. 1999. Water quality indices. State of the Art Report. National Institute of Hydrology, Scientific Contribution No. INCOH/SAR-25/2002. Roorkee. INCOH pp. 73.
  • DAWOOD A.S. 2017. Using multivariate statistical methods for the assessment of the surface water quality for a river: A case study. International Journal of Civil Engineering and Technology (IJCIET). Vol. 8. Iss. 10 p. 588–597.
  • DAWOOD A.S., KHUDIER A.S., BASHARA A.N. 2018. Physicochemical quality assessment and multivariate statistical analysis of groundwater quality in Basrah, Iraq. International Journal of Engineering and Technology. Vol. 7. Iss. 4.20 p. 245–250.
  • FAO 1994. Water quality for agriculture, irrigation and drainage. Paper No. 29. Rev. 1, M-56. Rome. Food and Agriculture Organization of United Nations. ISBN 92-5-102263-1 pp. 174.
  • HANNA N.S., SHEKHA Y.A. 2015. Using aquatic insects in water quality assessment of some branches of Greater Zab River within Erbil city, Iraqi Kurdistan Region. American International Journal of Research in Formal, Applied and Natural Sciences. Iss. 11 p. 18–22.
  • HELENA B., PARDO R., VEGA M., BARRADO E., FERNANDEZ J.M., FERNANDEZ L. 2000. Temporal evolution of groundwater composition an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research. Vol. 34 p. 807–816. DOI 10.1016/S0043-1354(99)00225-0.
  • IQS417ICS:13.06.20. Iraq Quality Standard (IQS) 2001. First update. Baghdad, Iraq. Drinking Water Council of Minister – Central Agency for Metrology and Quality Control.
  • ISMAIL A.H., ABED B.S., ABDUL-QADER S. 2014. Application of multivariate statistical techniques in the surface water quality assessment of Tigris River at Baghdad stretch, Iraq. Journal of the University of Babylon. Vol. 22. Iss. 2 p. 450–462.
  • ISSA H.M., ALRWAI R.A. 2018. Long-term drinking water quality assessment using index and multivariate statistical analysis for three water treatment plants of Erbil City, Iraq. UKH Journal of Science and Engineering. Vol. 2. Iss. 2 p. 39–48. DOI 10.25079/ukhjse.v2n2y2018.pp39-48.
  • LIU C.W., LIN K.H., KUO Y.M. 2003. Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. Science Total Environment. Vol. 313. Iss. 1–3 p. 77–89. DOI 10.1016/S0048-9697(02)00683-6.
  • LIU W., YU H., CHUNG C. 2011. Assessment of water quality in a subtropical Alpine lake using multivariate statistical techniques and geostatistical mapping: A case study. International Journal of Environmental Research and Public Health. Vol. 8 p. 1126–1140. DOI 10.3390/ijerph8041126
  • MOYEL M.S. 2014. Assessment of water quality of the Shatt Al Arab River, using multivariate statistical technique. Mesopotamia Environmental Journal. Vol. 1. Iss. 1 p. 39–46.
  • ONGLEY E.D. 1998. Modernization of water quality programs in developing countries issues of relevancy and cost efficiency. Water Quality International. September-October p. 37–42.
  • OUYANG Y. 2005. Evaluation of river water quality monitoring stations by principal component analysis. Water Research. Vol. 39 p. 2621–2635. DOI 10.1016/j.watres.2005.04.024.
  • OUYANG Y., NKEDI-KIZZA P., WU Q.T., SHINDE D., HUANG C.H. 2006. Assessment of seasonal variations in surface water quality. Water Research. Vol. 40 p. 3800–3810. DOI 10.1016/j.watres.2006.08.030.
  • PEJMAN A.H., NABI BIDHENDI G.R., KARBASSI A.R., MEHRDADI N., ESMAEILI BIDHENDI M. 2009. Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques. International Journal of Environmental Science and Technology. Vol. 6. Iss. 3 p. 467–476. DOI 10.1007/BF03326086.
  • RUMP H.H. 1999. Laboratory manual for the examination of water, wastewater and soil. 3rd. ed. Wiley-VCH Verlag Publication. Germany pp. 225.
  • SÂRBU C., POP H.F. 2005. Principal component analysis versus fuzzy principal component analysis. A case study: the quality of Danube water, 1985–1996. Talanta. Vol. 65. Iss. 5 p. 1215–1220. DOI 10.1016/j.talanta.2004.08.047.
  • SARGAONKAR A., DESHPANDE V. 2003. Development of an overall index of pollution for surface water based on a general classification scheme in Indian context. Environmental Monitoring and Assessment. Vol. 89. Iss. 1 p. 43–67. DOI 10.1023/A:1025886025137.
  • SHEKHA Y.A. 2008. The effect of Erbil city wastewater discharge on water quality of Greater Zab River, and the risks of irrigation. PhD Thesis. Baghdad University, Iraq pp. 121.
  • SHEKHA Y.A. 2009. Abiotic factors and their influences on phytoplankton density in Greater Zab River (Khabat subdistrict- Erbil, Iraq). Zanco Journal. Vol. 21. Iss. 2 p. 71–80.
  • SHEKHA Y.A. 2013. Multivariate statistical characterization of water quality analysis for Erbil wastewater channel. Journal of Environmental Science Toxicology and Food Technology. Vol. 5. Iss. 6 p. 18–26. DOI 10.21271/zjpas.v28i3.915.
  • SHRESTHA S., KAZAMA F. 2007. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji River basin, Japan. Environmental Modeling and Software. Vol. 22. Iss. 4 p. 464–475. DOI 10.1016/j.envsoft. 2006.02.001.
  • WHO 2011. Guidelines for drinking water quality. 4th ed. Incorporating the 1st addendum. World Health Organization ISBN 978-92-4-154995-0 pp. 541.
  • YANG L., XU L., LI S. 2009. Water quality analysis of the Soughua River basin using multivariate. Journal of Water Resource and Protection. Vol. 2 p. 110–121. DOI 10.3390/su 8020133.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf565518-2a4d-49ad-aa82-4be4a5619fbb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.