PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of Metal Oxides on the Thermal Decomposition Kinetics and Mechanisms of HAN/PVA Based Propellants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The thermal decomposition processes of HAN/PVA-based propellants have been investigated using a simultaneous thermogravimetric analysis (TGA) – differential scanning calorimetry (DSC), coupled with Fourier-Transform Infrared Spectroscopy (FTIR) and Mass Spectrometry (MS) system. The activation energy (Ea), pre-exponential factor A and reaction mechanism function f(α) of the decomposition processes have been determined by non-isothermal and Malek methods. The results showed that the decomposition process of an HAN/PVA sample occurs mainly in the temperature range 202.2~220.1 °C, with a mass loss, heat release and Ea of about 84.8%, 1474.18 and 88.76 kJ·mol–1, respectively. Of the seven metal oxides studied as catalysts, Al2O3, V2O5 and Fe2O3 have significant catalytic effects on an HAN/PVA-based propellant, in lowering the decomposition temperature, with Ea changing from 88.8 to 83.7, 85.6 and 113.6 kJ·mol–1, respectively. The f(α) of both HAN/PVA and HAN/PVA/Al2O3 samples can be expressed as f(α) = (1 – α)2, whereas f(α) = α or f(α) = α/2 fit well for the HAN/PVA/V2O5 and HAN/PVA/Fe2O3 samples.
Rocznik
Strony
322--338
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Science and Technology on Combustion, Internal Flow and Thermo-Structure Laboratory, Northwestern Polytechnical University, Xi’an 710072, P. R. China
autor
  • Science and Technology on Combustion, Internal Flow and Thermo-Structure Laboratory, Northwestern Polytechnical University, Xi’an 710072, P. R. China
autor
  • Science and Technology on Combustion, Internal Flow and Thermo-Structure Laboratory, Northwestern Polytechnical University, Xi’an 710072, P. R. China
autor
  • Xi’an Changfeng Machinery and Electronics Institute, Xi’an 710065, P. R. China
autor
  • Science and Technology on Combustion, Internal Flow and Thermo-Structure Laboratory, Northwestern Polytechnical University, Xi’an 710072, P. R. China
Bibliografia
  • [1] Amrousse, R.; Katsumi, T.; Itouyama, N.; Azuma, N.; Kagawa, H.; Hatai, K.; Ikeda, H.; Hori, K. New HAN-based Mixtures for Reaction Control System and Low Toxic Spacecraft Propulsion Subsystem: Thermal Decomposition and Possible Thruster Applications. Combust. Flame 2015, 162(6): 2686-2692.
  • [2] Baird, J.K.; Lang, J.R.; Hiatt, A.T.; Frederick, R.A. Electrolytic Combustion in the Polyvinyl Alcohol Plus Hydroxylammonium Nitrate Solid Propellant. J. Propul. Power 2017, 33(6): 1589-1590.
  • [3] Harikrishnan, E.S.; Hariharanath, B.; Vineeth, G.M.; Purushothaman, P. Thermokinetic Analysis and Performance Evaluation of Guanidinium Azotetrazolate Based Gas Generating Composition for Testing of Solid Rocket Motor Nozzle Closures. Propellants Explos. Pyrotech. 2018, 43(10): 1006-1012.
  • [4] Rafeev, V.; Rubtsov, Y.I. Kinetics and Mechanism of Thermal Decomposition of Hydroxylammonium Nitrate. Russ. Chem. Bull. 1993, 42(11): 1811-1815.
  • [5] Cronin, J.; Brill, T. Thermal Decomposition of Energetic Materials 29 – The Fast Thermal Decomposition Characteristics of a Multicomponent Material: Liquid Gun Propellant 1845. Combust. Flame 1988, 74(1): 81-89.
  • [6] Cronin, J.; Brill, T. Thermal Decomposition of Energetic Materials. 8. Evidence of an Oscillating Process during the High-rate Thermolysis of Hydroxylammonium Nitrate, and Comments on the Interionic Interactions. J. Phys. Chem. 1986, 90(1): 178-181.
  • [7] Van Dijk, C.A.; Priest, R.G. Thermal Decomposition of Hydroxylammonium Nitrate at Kilobar Pressures. Combust. Flame 1984, 57(1): 15-24.
  • [8] Khare, P.; Yang, V.; Meng, H.; Risha, G.A.; Yetter, R.A. Thermal and Electrolytic Decomposition and Ignition of HAN-Water Solutions. Combust. Sci. Technol. 2015.
  • [9] Wei, C.; Rogers, W.J.; Mannan, M.S. Thermal Decomposition Hazard Evaluation of Hydroxylamine Nitrate. J. Hazard. Mater. 2006, 130(1): 163-168.
  • [10] Feng-Qi, Z. Preparation, Characterization and Combustion Catalytic Action of Bismuth/Zirconium Gallate. Acta Phys.-Chim. Sin. 2013, 29(4): 777-784(778).
  • [11] Vargeese, A.A.; Muralidharan, K. Kinetics and Mechanism of Hydrothermally Prepared Copper Oxide Nanorod Catalyzed Decomposition of Ammonium Nitrate. Appl. Catal., A. 2012, 447-448: 171-177.
  • [12] Wei, Z.-X.; Wang, Y.; Zhang, X.-J.; Hu, C.-W. Combustion Synthesis and Effect of LaMnO3 and LaOCl Powder Mixture on HMX Thermal Decomposition. Thermochim. Acta 2010, 499(1-2): 111-116.
  • [13] Bao, L.; Zhang, W.; Zhang, X.; Chen, Y.; Chen, S.; Wu, L.; Shen, R.; Ye, Y. Impact of MWCNT/Al on the Combustion Behavior of Hydroxyl Ammonium Nitrate (HAN)-based Electrically Controlled Solid Propellant. Combust. Flame 2020, 218: 218-228.
  • [14] Courthéoux, L.; Popa, F.; Gautron, E.; Rossignol, S.; Kappenstein, C. Platinum Supported on Doped Alumina Catalysts for Propulsion Applications. Xerogels versus Aerogels. J. Non-Cryst. Solids 2004, 350: 113-119.
  • [15] Kappenstein, C.; Batonneau, Y.; Perianu, E.A.; Wingborg, N. Non Toxic Ionic Liquids as Hydrazine Substitutes. Comparison of Physico-Chemical Properties and Evaluation of ADN and HAN. Eur. Space Agency Spec. Publ. 2004.
  • [16] Matsuo, T.; Mishima, H.; Hisatsune, K.; Katsumi, T.; Sawai, S.; Hori, K. Development of HAN-based Liquid Propellant Thruster. Int. J. Energ. Mater. Chem. Propul. 2008, 7(2): 139-152.
  • [17] Popa, A.F.; Courthéoux, L.; Gautron, E.; Rossignol, S.; Kappenstein, C. Aerogel and Xerogel Catalysts Based on θ-Alumina Doped with Silicon for High Temperature Reactions. Eur. J. Inorg. Chem. 2005, 2005(3): 543-554.
  • [18] Yan, Q.-L.; Zhao, F.-Q.; Kuo, K.K.; Zhang, X.-H.; Zeman, S.; DeLuca, L.T. Catalytic Effects of nano Additives on Decomposition and Combustion of RDX-, HMX-, and AP-based Energetic Compositions. Prog. Energy Combust. Sci. 2016, 57: 75-136.
  • [19] Akahira, T.; Sunose, T. Method of Determining Activation Deterioration Constant of Electrical Insulating Materials. Res. Rep. Chiba Inst. Technol. 1971, 16: 22-23.
  • [20] Flynn, J.H.; Wall, L.A. General Treatment of the Thermogravimetry of Polymers. J. Res. Natl. Bur. Stand., Sect. A. 1966, 70A(6): 487-523.
  • [21] Starink, M.J. The Determination of Activation Energy from Linear Heating Rate Experiments: a Comparison of the Accuracy of Isoconversion Methods. Thermochim. Acta 2003, 404(1): 163-176.
  • [22] Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data. Thermochim. Acta 2011, 520(1): 1-19.
  • [23] Ma, Z.; Li, F.; Bai, H. Effect of Fe2O3 in Fe2O3/AP Composite Particles on Thermal Decomposition of AP and on Burning Rate of the Composite Propellant. Propellants Explos. Pyrotech. 2010, 31(6): 447-451.
  • [24] Bulinski, M.; Kuncser, V.; Plapcianu, C.; Krautwald, S.; Franke, H.; Rotaru, P.; Filoti, G. Optical and Electronic Properties of Polyvinyl Alcohol Doped with Pairs of Mixed Valence Metal Ions. J. Phys. D Appl. Phys. 2004, 37(17): 2437-2441.
  • [25] Peng, Z.; Kong, L.X. A Thermal Degradation Mechanism of Polyvinyl Alcohol/ Silica Nanocomposites. Polym. Degrad. Stab. 2007, 92(6): 1061-1071.
  • [26] Šesták, J.; Málek, J. Diagnostic Limits of Phenomenological Models of Heterogeneous Reactions and Thermal Analysis Kinetics. Solid State Ionics 1993, 63-65: 245-254.
  • [27] Málek, J. The Kinetic Analysis of non-Isothermal Data. Thermochim. Acta 1992, 200: 257-269.
  • [28] Yan, Q.-L.; Zeman, S.; Zhang, J.-G.; Qi, X.-F.; Li, T.; Musil, T. Multistep Thermolysis Mechanisms of Azido-s-triazine Derivatives and Kinetic Compensation Effects for the Rate-Limiting Processes. J. Phys. Chem. C. 2015, 119(27): 14861-14872.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf55e403-05f1-42ea-b700-562297ee7540
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.