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1. Introduction 

This contribution is supposed to contribute to a 

solution of dependability qualities of the complex (in 

this case) weapon system as an observed object. I 

would like to show one of the ways how to specify a 

value of single dependability measures of a set. The 

aim of our paper is to verify the suggested solution in 

relation to some functional elements which influence 

fulfillment of a required function in a very significant 

manner. [1], [3] 

A weapon set is a complex mechatronics system which 

is designed and constructed for military purposes. We 

are talking about a barrel shooting gun – a fast 

shooting two-barrel cannon. It is going to be 

implemented in military air force in particular.  

Generally speaking the set consists of mechanical 

parts, electric, power and manipulation parts, 

electronic parts and ammunition. For the purpose of 

use in our paper we are going to deal with isolated 

functional blocks and ammunition only. In this case we 

view the ammunition as recommended standardised 

rounds and pyrotechnic cartridges. 

Single parts of the set can be described with qualitative 

and most importantly quantitative indices which 

present their quality. In my paper I am dealing 

especially with quality in terms of dependability 

characteristics. We are working first and foremost with  

probability values which characterize single indices, 

and which describe functional range and required 

functional abilities of the set. We focus on the part 

handling rounds and pyrotechnic cartridges which are 

crucial for this case. In order to continue our work it is 

necessary to define all terms and specify every 

function. 

 

2. Essential terms and definitions 

We are always talking about an object in terms of 

reliability analyses. The definition for object is the 

same as the used in IEC 60500 (191/50). Consequently 

we need to describe the basic object’s measures [2]. 

Object’s function: 

The main function: The main function of the object is 

putting into effect a fire from a gun using standard 

ammunition. 

The step function: Manipulation with ammunition, its 

charging, initiation, detection and indication of 

ammunition failure during initiation, initiation of 

backup system used for re-charging of a failed 

cartridge. 

It is expected that the object will be able to work under 

different operating conditions especially in different 

temperature spectra, under the influence of varied 

static, kinetic and dynamic effects, in various zones of 

atmospheric and weather conditions. 

In this case we will not take into account any of the 

operating conditions mentioned above. However, their 

influence might be important while considering 

successful mission completion. 

One of the main terms we are going to develop is: 
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Mission: It is an ability to complete a regarded mission 

by an object in specified time, under given conditions 

and in a required quality. 

In our contribution it is a case of cannon ability to put 

into effect a fire in a required amount – in a number of 

shot ammunition at a target in required time, and under 

given operating and environmental conditions.  

As it follows from the definition of a mission it is a 

case of a set of various conditions which have to be 

fulfilled all at once in a way to satisfy us completely. 

Our object is supposed to be able to shoot a required 

amount of ammunition which has to hit the target with 

required accuracy (probability). We will not take into 

consideration circumstances relating to evaluation of 

shooting results, weapon aiming, internal and external 

ballistics, weather conditions and others. We will focus 

only on an ability of an object to shoot. [4] 

As we have stated above we will deal with isolated 

function blocks only. We are presuming that these 

blocks act according to required and determined 

boundary conditions. In order to understand functional 

links fully we introduce our way of dividing an object. 

We are talking about the following block: 

- manipulation with ammunition, its charging, 

initiation, failure detection and indication 

during initiation, initiation of a backup system 

in order to recharge a failed cartridge, all 

mechanical parts, all electric and electronic 

parts, interface elements with a carrying device 

- Block A; 

- ammunition – Block B; 

- pyrotechnic cartridges – Block C. 

 

3. Description of a process 

The process as a whole can be described this way: 

From a mathematical and technical point of view it is a 

fulfilling of requirements´ quee which gradually comes 

into the service place of a chamber. The requirements´ 

quee is a countable rounds´ chain where the rounds 

wait for their turn and are transported from the line 

where they wait in to a service place (fulfilment of a 

requirement) of a chamber and there they are initiated. 

After the initiation the requirement is fulfilled. An 

empty shell (one of the essential parts of a round) 

leaves a chamber taking a different way than a 

complete round. When the requirement is fulfilled, 

another system which is an integral part of a set detects 

process of fulfilling the requirement. The process is 

detected and indicated on the basis of interconnected 

reaction processes. In this case fulfilling the 

requirement is understood as a movement of a barrel 

breech going backwards. Both fulfilling the 

requirement and its detection are functionally 

connected with transport of another round waiting in a 

line to go into a chamber. 

Let’s presume that rounds are placed in an ammunition 

feed belt of an exactly defined length. A maximum 

number of rounds which could be placed in a belt is 

limited by the length then. The length is given either 

by construction limitations or by tactical and technical 

requirements for a weapon set. Let’s presume that 

despite different lengths of an ammunition belt, this 

will be always filled with rounds from the beginning to 

the end. Let’s also assume that the rounds are not non-

standard and are designed for the set. 

The process of fulfilling the requirement is monitored 

all the time by another system which is able to 

differentiate if it is fulfilled or not. The fulfilment itself 

means that a round is transported into a chamber, it is 

initiated, shot, and finally an empty shell leaves a 

chamber according to a required principle. If the 

process is completed in a required sequence, the 

system detects it as a right one. 

Because of unreliability of rounds the whole system is 

designed in the way to be able to detect situations in 

which the requirement is not fulfilled in a demanded 

sequence and that is why it is detected as faulty. 

Although a round is transported into a chamber and is 

initiated, it is not fired. A function which is essential 

for a round to leave a chamber is not provided either, 

and therefore another round waiting in line cannot be 

transported into a chamber. That is the reason why 

fulfilling of the requirement is not detected. 

The system is designed and constructed in such a way 

that it is able to detect an event like this and takes 

appropriate countermeasures. A redundant system 

which has been partly described above is initiated. 

After a round is initiated and the other steps don’t carry 

out (non-fire, non-movement of a barrel breech 

backwards, non-detection of fulfilling the requirement, 

non-leaving of a chamber by an empty shell, and non-

transport of another round into a chamber) a system of 

pyrotechnic cartridges is initiated. It is functionally 

connected with all the system providing mission 

completion.  A pyrotechnic cartridge is initiated and 

owing to this a failed round is supposed to leave a 

chamber. A failed functional link is established and 

another round waiting in line is transported into a 

chamber. 

In order to restore the main function we use a certain 

number of backup pyrotechnic cartridges. Our task is 

to find out a minimum number which is essential for 

completing the mission successfully. 

 

4. Mathematical model 

To meet the needs of our requirements we are going to 

use a mathematical way which helps us to express 

successful completing the mission. We know that the 

number of rounds n in an ammunition belt is final. We 

also know that an event-failure of a round B  
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(ammunition block – B) can occur with a probability 

pn. All the requirements and specifications mentioned 

above will be used in further steps. 

Because it is about a stream of rounds of a number n 

which wait in line to meet the requirement, and each of 

them has a potential quality pn, a number of failed 

rounds has a binomial distribution (Bi) of a an event 

occurrence. The distribution is specified by the 

parameters n and pn: Bi(n,pn). A number of occurrences 

Xn of an event B  follows the distribution in 

Bernoulli’s row n of independent experiments, and 

probability of event occurrence P( B ) = pn. A number 

pn  is the same in every experiment. [5]; [6] 

Because there is an occurrence of a number of events 

in an observed file we are talking about a counting 

distribution of an observed random variable. A random 

variable is in this case a number of failed rounds. A 

probability function of a binomial distribution can be 

put that way: 
 

     xn

n

x
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 1)( ; x{0,1,2,...,n}.   (1) 

 

Qualities of binomial distribution like a mean value 

E(Xn) and dispersion D(Xn) are obtained by calculating 

the formula: 

 

   E(Xn) = n . pn ,                                                                                          (2) 

 

   D(Xn) = n . pn . (1- pn).                                            (3) 

 

A number of failed rounds follows a binomial 

distribution with parameters n – a number of rounds 

and pn – failure occurrence probability of a round. 

In order to specify a mean number of possible failures 

in an ammunition belt of a given length (there is a 

certain amount of rounds) we quantify the formula (2) 

and replace n by a real number of rounds in an 

ammunition belt. 

On the basis of construction, technical and technical 

requirements we can have ammunition belts of 

different length at a given moment, and consequently 

we have a different number of rounds. Only a 

maximum number of rounds in an ammunition belt is 

considered in another calculation. The ammunition belt 

is supposed to be of a maximum length which is able 

to fit a loading device 

In case a round fails initiation of a backup system for 

function restoration occurs according to a mechanism 

described above. It is a case of successive initiation of 

pyrotechnic cartridges (in a system of pyrotechnic 

cartridges) which are supposed to guarantee restoring 

of a required broken chain of function. A number of 

pyrotechnic cartridges in a backup system is m. 

Pyrotechnic cartridges have also a probability pm of a 

failure occurrence which unable their initiation. 

Pyrotechnic cartridges too are placed in line waiting 

for meeting the requirement which results from their 

function. In case of a failure of the first pyrotechnic 

cartridge the next one is initiated up to the moment 

when either a function is restored or all pyrotechnic 

cartridges are used up. 

On the basis of the facts mentioned above it is obvious 

that the process of fulfilling the requirements follows 

geometrical distribution (Ge). It means that the process 

of fulfilling the requirements repeats so often until it 

meets them in terms of reversion of all the process to 

an operational state. It is a case of an observed discreet 

random variable. Pyrotechnic cartridges also have 

failure rate pm (failure probability) and there is a 

limited number of them. It means that a failure can 

occur up to m-times. A geometrical distribution Ge(pm) 

generally follows this outline. 

We are going to assess the succession of independent 

attempts, and probability of an observed event 

occurrence equals the same number pm in each attempt. 

The quantity Xm is a serial number of the first success 

which means that a required event occurs. The event 

here means a function of a block C, and a probability 

pm means an event occurrence C . Characteristics of 

the process are as follow. A probability function: 

 

   P(Xm=x) = pm
x-1

(1-pm); x{1,2,3,…,m}.                   (4) 

 

It is a special case of a geometrical distribution when a 

probability of an event occurrence (a pyrotechnic 

cartridge failure) does not depend on a number of 

previous unsuccessful attempts of a value 0. 

Characteristics of a geometrical distributions, for 

example mean value E(Xm) (a mean number of 

pyrotechnic cartridges necessary for removing one 

failed round) and dispersion D(Xm) are obtained by a 

calculation of a formula: 
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While completing the mission during either training or 

a real deployment a few scenarios can occur, and the 

course of them depends on single functional blocks. To 

complete the mission M successfully single blocks are 

expected to be failure free as stated above. The 

function of the blocks mentioned above are designated 

as A, B, C, the opposite is ;A ;B C . The relation can 

be expressed by using events this way: 

 

   M = A (B C).                                                     (6) 
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Using probability expression we talk about probability 

of mission completion M. We can put it that way: 

 

   P(M) = P(A) . [P(B) + P(C) - P(B C)];               (7) 

 

5. Description of scenarios 

Description of the scenarios which can occur during 

completing or defaulting the mission relate only to an 

ammunition block and to a redundant mechatronics 

system with pyrotechnic cartridges. 

The mission is completed. In the first case there can be 

a situation when all the ammunition of a certain 

amount which is placed in an ammunition belt is used 

up and a round failure occurs or it is used up and a 

round failure does not occur. In this case a backup 

system of pyrotechnic cartridges is able to reverse a 

system into an operational state. Using up can be 

single, successive in small bursts with breaks between 

different bursts, or it might be mass using one burst. 

Shooting is failure free or there is a round failure 

occurrence n. In case a round failure occurs, a system 

which restores a function of pyrotechnic cartridges is 

initiated. There are two scenarios too – a system 

restoring a pyrotechnic cartridges function is failure 

free, or a pyrotechnic cartridge fails. If a function of 

pyrotechnic cartridges is applied, it can remove a 

failure m-times. So a number of restorations of the 

function is the same as the number of available 

pyrotechnic cartridges. In order to complete the 

mission successfully we need a higher amount of 

pyrotechnic cartridges m, or in the worst case the 

number of pyrotechnic cartridges should be equal to a 

number of failures. Another alternative is the situation 

that a round fails and in this case a pyrotechnic 

cartridge fails too. A different pyrotechnic cartridge is 

initiated and it restores the function. This must satisfy 

the requirements that an amount of all round failures n 

is lower or at least equal to a number of operational 

(undamaged) pyrotechnic cartridges m. The mission is 

completed in all the cases mentioned above and when 

following a required level of readiness of a block A. 

The mission is not completed. In the second case the 

shooting is carried out one at a time, in small bursts or 

in one burst, and during the shooting there will be n 

round failures. At the time the failure occurs a backup 

system for restoring the function will be initiated. 

Unlike the previous situation there will be m 

pyrotechnic cartridges´ failures and a total number of 

pyrotechnic cartridges´ failures equals at least a 

number of round failures, and is equal to a number of 

implemented pyrotechnic cartridges M at the most. It 

might happen in this case that restoring of the function 

does not take place and the mission is not completed at 

the same time because there are not enough 

implemented pyrotechnic cartridges.  

The relation of transition among the states can be 

expressed by the theory of Markov chains. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Description of transitions among the states  

 

Characteristics of the states: 

0 state: An initial state of an object until a round 

failure occurs with a probability      function of a 

round P(B). It is also a state an object can get with a 

pyrotechnic cartridge probability P(C) in case a round 

failure occurs  

 

      BPBP 1 , 

 

or  
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m1…mm state:  A state an object can get while 

completing the mission. Either a round failure occurs 

in probability    BPBP 1 , or there is a pyrotechnic 

cartridge failure in probability    CPCP 1 . 

1 state: A state an object can get while completing the 

mission. It is so called an absorption state. Transition 

to the state is described as probability    CPCP 1  

of a failure of last pyrotechnic cartridge as long as an 

object was in a state „kn“ before this state, or it can be 

described as probability of a round failure occurrence 

   BPBP 1  as long as an object was in a state 0 

before this state and all pyrotechnic cartridges are 

eliminated from the possibility to be used. 

Transitions among different states as well as absolute 

probability might be put in the following formulae: 
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      BPmP 11 ,                                                    (9) 

 

          CPBPmP m  11 ,                            (10) 
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     11 P .                                                                 (11) 

 

We suggest the subsequent steps for all the scenarios 

mentioned above. Following the mathematical formula 

(1) it is possible to find out probability of a number of 

round failures´ occurrences in an ammunition belt of a 

length n. Following the equation (2) we can specify an 

expected mean value of a mean number of round 

failures in an ammunition belt of a given length. 

The mean value result is recommended to be used for a 

maximum length of an ammunition belt (a maximum 

number of rounds) which could be implemented into a 

weapon set concerning construction as well as tactical 

and technical views. The result informs us of a 

minimum number of pyrotechnic cartridges which are 

to be applied for a successful completing the mission. 

In this case there is a threat of a pyrotechnic cartridge 

failure which could cause a system failure (as far as a 

number of round failures is higher than a number of 

available pyrotechnic cartridges). In this case we 

would not complete the mission. 

In order to assess dependability of a shooting function 

it is necessary to know a number of pyrotechnic 

cartridges and, depending on this, probability of 

completing the mission. To fulfil the requirements I 

suggest three steps: 

 

1) To determine a required number of 

pyrotechnic cartridges; 

2) To quantify generally probabilities of 

completing the mission; 

3) To quantify exactly probabilities of completing 

the mission 

 

Following the steps mentioned above we suggest this 

method. 

 

Ad 1) To determine a required number of pyrotechnic 

cartridges 

 

When we calculate a mean number of failed rounds 

E(Xn) which is determined from a maximum number of 

rounds n in a ammunition belt (see above) and 

probability of a round failure occurrence pn, see the 

formula (2), we get a minimum recommended number 

of pyrotechnic cartridges which are supposed to 

guarantee completing the mission in case a round fails. 

The calculation would be successful in case a 

pyrotechnic cartridge failure does not occur. However, 

even a system of pyrotechnic cartridges concerning a 

failure occurrence depends on counting distribution of 

a discreet random variable which is specified in our 

case by a geometrical distribution. (Because the system 

is activated so long until the observed and required 

event occurs – in terms of repairing the failure.) We 

suggest calculating a mean number of pyrotechnic 

cartridges´ failures following the formula (5). For the 

calculation we will need only pyrotechnic cartridge 

failure probability pm. On the basis of this calculation 

we get an average number of pyrotechnic cartridges 

required to repair a failure of one round. 

In order to complete the mission a number of available 

(operational) pyrotechnic cartridges should be at least 

the same as a number of failed rounds. When we 

multiply the mean values we obtain a total number of 

pyrotechnic cartridges M which will guarantee 

completing the mission (even in the situation when 

besides failed rounds there are failed pyrotechnic 

cartridges too) 

 

    M = E(Xn) . E(Xm)= 
m

n

p

pn

1

.
.                                (12) 

 

Logically a number of pyrotechnic cartridges which 

are essential for completing the mission successfully is 

continually proportioned to a number of rounds n and 

to probability of their failure pn, and inversely 

proportioned to probability of pyrotechnic cartridge 

“success” 1-pm. The Figure 2 shows a typical course of 

dependability M (pn;pm), it means a invariant M which 

depends on variables pn a pm. This way might be the 

first of the alternatives how to solve the problem. It 

suggests a total number of pyrotechnic cartridges 

which are essential for completing the mission but it 

does not show the way how to quantify probability of 

mission completion. 

While recording distribution parameters we are going 

to use an equivalent m standing for a value M. 

 

 
 

Figure 2. Course of dependability of a number of 

pyrotechnic cartridges M on variables pn and pm 

 

Ad 2) To quantify generally probability of completing 

the mission 

 

In this case we follow the solution which has been 

stated in the part Ad 1. We take into account that there 

is a number of pyrotechnic cartridges required for 
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completing the mission. So, we determine an  fractile 

which provides an upper limit of a number of rounds 

which fail in probability . After we specify  fractile 

which provides an upper limit of pyrotechnic 

cartridges which fail in probability . 

While working with fractiles we follow the general 

information. 100% fractile of a random variable X is a 

number xp, and a probability p where 0p1 is denoted 

by 

 

   P(X  xp)  p                                                          (13) 

 

and 

 

   pxP
pxx





)(lim .                                                      (14) 

 

The fractile of an observed random variable we are 

working with is expressed by 
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We put it into words this way – occurrence probability 

n of a number of events is specified by a sum of 

probabilities for the occurrence of all events from 0 to 

n. 

In our case we take into account that round failures´ 

distribution is binomial Bi=(n;pn) and a fractile 

determining an upper limit of a number of rounds 

which might fail in probability  will be designated as 

x. We put it that way 

 

       xXP n .                                                   (16) 

 

We suppose that a general distribution of a pyrotechnic 

cartridge follows a binomial distribution too Bi(m;pm). 

A fractile providing an upper limit of a number of 

pyrotechnic cartridges which fail in probability  is 

denoted by y . Thus 

 

       yYP m .                                                  (17) 

 

The equation can be put in a different way as 

 

       ymYmPr m .                                  (18) 

 

The following interpretation of a fractile y is useful 

for other steps – at least ym  of pyrotechnic 

cartridges will be available with probability . 

As it was stated before we are supposed to know a total 

number of pyrotechnic cartridges M which are 

essential for completing the mission. The requirement 

is shown in the following equation: 

 

      xyM  .                                                     (19) 

 

The equation shows that a number of available 

pyrotechnic cartridges (we obtain it when we subtract 

failed pyrotechnic cartridges from a total amount of all 

applied pyrotechnic cartridges) will be at least the 

same (it would be better to have a higher number) as a 

number of failed rounds. If this assumption is fulfilled, 

we can expect that the mission will be completed in 

probability pmis. Probability of completing the mission 

can be put that way 

 

   pmis =  .  .                                                           (20) 

 

The formula can be described like this – probability of 

completing the mission equals a multiplication of 

probabilities; 0;1 which provide us an upper 

limit of failed rounds and an upper limit of failed 

pyrotechnic cartridges for required levels of fractiles. 

If the level of mission completion probability is known 

in advance, e.g. it is specified by technical 

requirements for a set, we can put it in the formula 

which is based on an assumption that the mission will 

be completed in case a number of available 

pyrotechnic cartridges is at least the same as rounds 

which are supposed to fail 

 

    ymx  .                                                         (21) 

 

If it goes this way, the mission will be completed in 

probability expressed in the formula (20). 

If we have the values , n, , pmis, we may find a value 

m (M) using quantitative methods. At the end of my 

contribution there is an example of this solution. 

 

Ad 3) To quantify exactly probabilities of completing 

the mission 

 

In the last step we are going to examine how to 

quantify an exact value of mission completion 

probability pmis. On the basis of the assumption 

described above we know that probability of 

completing the mission depends on reliability of two 

key blocks. It is an ammunition block (B) and a 

pyrotechnic cartridges´ block (C). Following the last 

two alternatives we might specify both a required total 

number of pyrotechnic cartridges which is essential to 

complete the mission (in case all conditions are met), 

and a general value of mission completion probability 

in case general conditions are followed. This solution 

might satisfy us under certain circumstances but it is 

not always like that. Therefore we suggest the last way 
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how to quantify probability of completing the mission 

based on more exact method. 

It is necessary to define indices and quantities which 

effect directly probability of completing the mission 

pmis. These are a number of rounds n, probability of a 

round failure occurrence pn, a number of pyrotechnic 

cartridges m, and probability of a pyrotechnic cartridge 

failure occurrence pm. A general function of mission 

completion probability and its variables is put that 

way: 

 

   pmis(n,pn,m,pm).                                                       (22) 

 

Further steps follow well known assumptions. The 

function of a rounds´ failure takes form of a binomial 

distribution with parameters n and pn – Bi(n,pn), and 

the rounds which may fail can be marked with k where 

k  {0;1;2;…..;n}. Moreover, we introduce functions 

of a pyrotechnic cartridges´ failure Yk where k 

{0;1;2;…..;m}. They show us possibility of a 

pyrotechnic cartridge failure while shooting as soon as 

it is necessary to remove a failed round. Let us assume 

that a sum of functions of a pyrotechnic cartridges´ 

failure will be lower than a number of available 

pyrotechnic cartridges used for removing a failed 

round. We put it in the following formula 
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mYYY k  ......10 .                         (23) 

 

Following the assumption mentioned above we 

consider the case that the first available pyrotechnic 

cartridge follows geometrical distribution of a function 

of its activity Ge(pm) during the failure of the k-th 

round Yk. The function pm means probability of 

pyrotechnic cartridge failure occurrence. It can be 

described as 

 

   Yk ~ Ge(pm).                                                           (24) 

 

The equation showing probability of completing the 

mission is put that way 
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where in case k=0 (it reflects a situation where there is 

no round failure) a function would be specified 

additionally provided that P(Y1+….Yk  m)=1. And in 

order to solve a probability value of completing the 

mission we would use so called completing the 

formula taking advantage of forming functions. From a 

mathematical point of view this is much more 

demanding but it offers a very exact value expressing 

probability of completing the mission pmis while using 

a variation of function factors. On its basis it is easy to 

prove a dependability of a total number of used 

pyrotechnic cartridges on a level of mission 

completion probability pmis. 

 

An example of a possible solution: 

 

Given: 

pn = 0,000 1 - round failure probability; 

n = 200 - maximum rounds´ number during one 

process; 

pm = 0,01 - pyrotechnic cartridge failure probability; 

pmis = 0,99 - probability of mission success. 

 

Solution according to “Ad 1)”: We are looking for a 

sufficient number of pyrotechnic cartridges used for 

removing a possible failure 
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The formula shows us that having at least one 

pyrotechnic cartridge is enough to complete the 

mission successfully. However, we cannot quantify 

probability for completing the mission. 

 

Solution according to “Ad 2)”: We are looking for a 

level of mission completion probability pmis as well as 

a required number of pyrotechnic cartridges. We 

follow the values described above. The solution is put 

in the table. 

 

Table 1. Results of example 
 

α x  


 misp
  m 

0,991 1 0,998991 2 

0,992 1 0,997984 2 

0,993 1 0,996979 2 

0,994 1 0,995976 2 

0,995 1 0,994975 2 

0,996 1 0,993976 2 

0,997 1 0,992979 2 

0,998 1 0,991984 2 

0,999 1 0,990991 2 

 

If we take into account this solution and starting 

marginal conditions, two pyrotechnic cartridges will be 

enough to complete the mission successfully in 0,99 

probability. 

 

6. Conclusion 

This contribution is supposed to serve as one of the 

alternatives solving the problems connected with 
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providing a function of an object whose function is 

redundant (backed up) because its failure is important 

to complete the mission. In order to solve the problem 

we chose the methods which are supposed to be the 

most suitable for it. Other ways are also likely to be 

used in order to reach the aim but it is not the intention 

of this contribution. 
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