PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kwantowe lasery kaskadowe do celów spektroskopii molekularnej : zagadnienia wybrane

Autorzy
Identyfikatory
Warianty tytułu
EN
Quantum cascade lasers designer for spectroscopy : selected topics
Języki publikacji
PL
Abstrakty
PL
Artykuł stanowi przegląd wybranych właściwości kwantowych laserów kaskadowych I-rodzaju, którymi te przyrządy powinny się charakteryzować w zastosowaniach do celów spektroskopii, w paśmie średniej podczerwieni. Przyjęto, że muszą to być lasery pracujące w pojedynczym modzie a do najważniejszych ich parametrów zaliczono osiągalne długości fal, szerokość generowanej linii, moc wyjściową oraz zakres przestrajania. W przeważającej części artykułu zagadnienia te przedstawiono w sposób ogólny mając na celu głównie wprowadzenie czytelnika w ich meritum, natomiast najbardziej znaczące dokonania w okresie ostatniej dekady zilustrowano za pomocą chronologicznie ułożonych tablic. Liczne odesłania do literatury zawarte w tekście i tabelach powinny umożliwić zainteresowanym czytelnikom dokładniejsze zapoznanie się ze szczegółami dotyczącymi omawianych zagadnień. Analiza danych zawartych w artykule może w szczególności posłużyć do oceny sytuacji w dziedzinie szeroko rozumianej technologii laserów kaskadowych oraz perspektyw ich dalszego rozwoju.
EN
The paper contains a review of some selected properties of the type quantum cascade lasers designed for MIR spectroscopy. Single mode operation, available wavelengths, linewidh, output power and the tuning range are considered in particular. The topics are discussed in a rather general form to introduce the reader into the subject. Most relevant properties of the lasers attained in the last decade have been displayed in tables which also show chronology of the developments. Interested readers may find much more details in the numerous bibliography included in the paper. Analysis of the data contained in the paper may be helpful to estimate the state of the art and perspectives for further progress in the field.
Rocznik
Strony
58--66
Opis fizyczny
Bibliogr. 80 poz., il., tab.
Twórcy
  • Instytut Technologii Elektronowej, Warszawa
Bibliografia
  • [1] Mroziewicz B., Granice widma promieniowania laserów półprzewodnikowych - résumé po 50 latach rozwoju ich technologii, Elektronika, 10/2012, str. 81-90.
  • [2] Curl R. F., F. Capasso, C. Gmahl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G.Wysocki, F. K. Tittel, Quantum cascade lasers in chemical physics, Chemical Phys. Lett., vol. 487, 2010, pp. 1-18.
  • [3] McCurdy M. R., Y. Bakhirkin, G. Wysocki, R. Lewicki, F. Tittel, Recent advances of laser-spectroscopy-based techniques for applications in breath analysis, Journal of Breath Research, Vol. 1, 2007, p. 014001.
  • [4] Henderson A.: Mid-IR Tunable Lasers Probe Hydrocarbone Molecules, Photonics Spectra, Sept. 2009, pp. 72-75.
  • [5] Nahle L., L. Hildebrandt, M. Kamp, S. Höfling, Interband Cascade Lasers, ICIs open opportunities for mid-IR sensing, Laser Focus World vol. 49, issue 05, June 2013.
  • [6] Xie F., C. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, Ch. Zah, Room temperature CW Operation of Mid-IR Distributed Feedback Quantum Cascade Lasers for CO2, N2O, and NO gas Sensing, IEEE J. Sel. Topics in Quantum Electron., vol. 18, No 5., 2012, pp. 1605-1612.
  • [7] Gmahl C., F. Capasso, R. Colombelli, R. Paiella, D. L. Sivco, A. Y. Cho, Quantum cascade lasers shape up for gas sensing, Laser Focus World, Sept. 2001, pp. 65-70.
  • [8] Weida M. J., D. Arnone, T. Day, Tunable QC laser opens up mid-IR sensing applications, Laser Focus World, Sept. 2001, pp. 65-70.
  • [9] Faist J., Recent advances extend spectral output of QC lasers, Laser Focus World, April, 2008, pp. 71-74.
  • [10] Troccoli M., L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Höfler, R. Lewicki, G. Wysocki, F. K. Tittel, F. Capasso, High- Performance Quantum Cascade Lasers Grown by Metal-Organic Vapor Phase Epitaxy and Their Applications to Trace Gas Sensing, J. Lightwave Technol., Vol. 26, No. 21, 2008, pp. 3534-3555.
  • [11] Yang Q., Ch. Manz, W. Bronner, K. Köhler, J. Wagner, Short-Wave- length Quantum-Cascade Lasers, Photonics Spectra, April 2007, pp. 64-69.
  • [12] Bismuto A., M. Beck, J. Faist, High power Sb-free quantum cascade laser emitting at 3.3 µm above 350 K, Appl. Phys. Lett. Vol. 98, 2011, p. 191104.
  • [13] Faist J., F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, Quantum Cascade Laser, Science, Vol. 264, pp. 553-556.
  • [14] Capasso F., A. Tredicucci, C. Gmahl, D. L. Sivco, A. L. Hutchinson, A. F .Cho, High-Performance Superlattice Quantum Cascade Lasers, IEEE J. Selected Topics in Quantum Electron., Vol. 5, No. 3, 1999, pp. 792-807.
  • [15] Hugi A., R. Maulini, J. Faist, External cavity quantum cascade laser, Semicond. Sci. Technol., Vol. 25, 2010, p. 083001 (14 pp.).
  • [16] Bai Y., S. Slivken, Q. Y. Lu, N. Bandyopadhyay, M. Razeghi, Angled cavity broad area quantum cascade lasers, Appl. Phys. Lett. Vol. 101, 2012, p. 081106.
  • [17] Faist J., C. Gmahl, F. Capasso, C. Sirtori, D. L. Sivco., J. N. Baiiiargeon, A. Y. Cho, Distributed feedback quantum cascade lasers, Appl. Phys. Lett., Vol. 70 (20) 1997, pp. 2670-2672.
  • [18] Köhler R., C. Gmachl, A. Tredicicci, F. Capasso, D. L. Sivco, S. N. G. Chu, A. Y. Cho, Single-mode tunable, pulsed, and continuous wave quantum-cascade distributed feedback lasers at λ = 4.6 - 4.7 µm, Appl. Phys. Lett., Vol. 76, no. 9, 2000, pp. 1092-1094.
  • [19] Hofstetter D., M. Beck, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, Distributed Feedback Quantum Cascade Lasers Emitting in the 9 - µm Band with InP Top Cladding Layers, IEEE Photon. Techn. Lett., Vol. 14, No. 1, 2002, pp. 18-20.
  • [20] Evans A., S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, M. Razeghi, Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency, Appl. Phys. Lett., Vol. 91, 2007, p. 071101.
  • [21] Vaitiekus D., D. G. Revin, K. L. Kennedy, Sh. Y. Zhang, J. W. Cockburn, Quantum Cascade Laser With Unilateral Grating, IEEE Photon. Tech. Lett., vol. 24, No. 23, 2012, pp. 2112-2114.
  • [22] Ajili L., J. Faist, H. Beere, D. Ritchie, G. Davis, E. Linfield, Loss-coupled distributed feedback far-infrared quantum cascade lasers, Electron. Lett., Vol. 4, No. 7, 2007.
  • [23] Kogelnik H., C. V. Shank, Coupled-Wave Theory of Distributed Feedback Lasers, J. Appl. Phys.,Vol. 43, No. 5, 1972, pp. 2327-2335.
  • [24] Krysa A. B., D. G. Revin, J. P. Commin, Ch. N. Atkins, K. Kennedy, Y. Qiu, T. Walther, J. W. Cockburn, Room-Temperature GaAs/AlGaAs Quantum Cascade Lasers Grown by Metal-Organic Vapor Phase Epitaxy, IEEE Photon. Technol. Lett., Vol. 23, No. 12, 2011, pp. 774-776.
  • [25] Bugajski M., K. Kosiel, A. Szerling, P. Karbownik, K. Pierściński, D. Pierścińska, G. Hałdaś, A. Kolek, High performance GaAs/AlGaAs quantum cascade lasers: optimization of electrical and thermal properties, Proc. of SPIE Vol.8432, 843201-1.
  • [26] Cascade lasers pulse more powerfully, euroPhotonics, Spring 2012, pp.14-15.
  • [27] Gmahl C., D. L. Sivco, R. Colombelli, F. Capasso, A. Y. Cho, Ultrabroadband semiconductor laser, Nature, Vol. 415, No. 21, 2002, pp. 883-887.
  • [28] Gmahl C., D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, A. Y. Cho, Quantum cascade lasers with a heterogeneous cascade: Two-wavelength operation, Appl. Phys. Lett., vol. 79, No. 5, 2001, pp. 572-574.
  • [29] Faist J., D. Hofstetter, M. Beck, T. Aellen, M. Rochat, S. Blasser, Bound-to-Continuum and Two-Phonon Resonance Quantum-Cascade Lasers for High Duty Cycle, High-Temperature Operation, IEEE J. Quantum Electron., vol. 38, No. 6, 2002, pp. 533-546.
  • [30] Maulini R., M. Beck, J. Faist, E. Gini, Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers, Appl. Phys. Lett., vol. 84, No. 10, 2004, pp.1659-1661.
  • [31] Wittman A., E. Gresch, T. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, J.Faist, High-performance bound-to-continuum quantum-cascade lasers for broad gain applications, IEEE J. Quantum Electron., vol. 44, 2008, pp. 36-40.
  • [32] Wysocki G., R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, J. Faist, Widely tunable mode-hope free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing, Appl. Phys. B92, 2008, pp. 305-311.
  • [33] Maulini R., A. Mohan, M. Giovannini, J. Faist, E. Gini, External cavity quantum-cascade laser tunable from 8.2 to 10.4 µm using a gain element with a heterogeneous cascade, Appl. Phys. Lett., vol. 88, 2006, pp. 201113.
  • [34] Wittman A., A. Hugi, E. Gini, N. Hoyler, J. Faist, Heterogenous High-Performance Quantum-Cascade Laser Sources for Broad-Band Tuning, IEEE J. Quantum Electron., Vol. 44, No. 11, 2008, pp. 1083-1088.
  • [35] Hugi A., R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, E. Gini, External cavity quantum cascade laser tunable from 7.6 to 11.4 µm, Appl. Phys. Lett., vol. 95, 2009, p. 061103.
  • [36] Henry C. H., Theory of the linewidth of semiconductor lasers, IEEE J. Quantum Electron , Vol. QE-18, 1982, pp. 259-264.
  • [37] Osiński M., J. Buus, Linewidth boadening factor in semiconductor lasers - An overview, IEEE J. Quantum Electron., Vol.QE-23,1987, pp.9-29.
  • [38] Kim J., M. Lerttamrab, S. L. Chuang, C. Gmachl, D. L. Sivco, F. Capasso, A. Y. Cho, Theoretical and Experimental Study of Optical Gain and Linewidth Enhancement Factor of Type-I Quantum-Cascade Lasers, IEEE J. Quantum Electron., Vol. 40, No. 12, 2004, pp.1663-1674.
  • [39] Myers T. L., R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, A. Y. Cho, Free-running frequency stability of mid-infrared quantum cascade lasers, Optic. Lett., vol. 27, 2002, pp. 170-172.
  • [40] Normand E., G. Duxbury, N. Langford, Characterisation of the spectral behavior of pulsed quantum cascade lasers using a high resolution Fourier transform infrared spectrometer, Optics Commun.,vol. 197, 2001, pp.115-120.
  • [41] Beck M., D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, Continuous-wave operation of a mid-infrared semiconductor laser at room temperature, Science, vol. 295, 2002, pp. 301-305.
  • [42] Bai Y., N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, M. Razeghi, Highly temperature insensitive quantum cascade lasers, Appl. Phys. Lett. Vol. 97, 2010, p. 251104.
  • [43] Evans C. A., V. D. Jovanović, D. Indjin, Z. Ikonić, P. Harrison, Investigation of Thermal Effects in Quantum-Cascade Lasers, IEEE J. Quantum Electron., vol. 42, 2006, pp. 859-867.
  • [44] Bai Y., S. Slivken, S. R. Darvish, A. Haddadi, B. Gökden, M. Razeghi, High power broad area quantum cascade lasers, Appl. Phys. Lett. Vol. 95, 2009, p. 221104.
  • [45] Yu Jae Su, S. Slivken, A. J. Evans, M. Razeghi, High-Performance Continuous-Wave Operation of λ ~ 4.6 µm Quantum-Cascade Lasers Above Room Temperature, IEEE J. of Quantum Electron., vol. 44, No 8, 2008, pp. 747-754.
  • [46] Gökden B., Y. Bai, N. Bandyopadhyay, S. Slivken, M. Razeghi, Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ ~ 4.36 µm, Appl. Phys. Lett. Vol. 97, 2010, p. 131112.
  • [47] Krishnaswami K., B. E. Bernacki, B. D. Cannon, N. Hȏ, N. C. Anheier, Emission and Propagation Properties of Midinfrared Quantum Cascade Lasers, IEEE Photon. Technol. Lett., Vol. 20, No.4, 2008, pp. 306-308.
  • [48] Blanchard R., T. S. Mansuripur, B. Gökden, N. Yu, M. Kats, P. Genevet, K. Fujita.T. Edamura, M. Yamanishi, High-power low-divergence tapered quantum cascade lasers with plasmonic collimators, Appl. Phys. Lett. Vol. 102, 2013, p. 191114.
  • [49] Gökden B., T. S. Mansuripur, R. Blanchard, Ch. Wang, A. Goyal, A. Sanchez-Rubio, G. Turner, F. Capasso, High-brightness tapered quantum cascade lasers, Appl. Phys. Lett. Vol. 102, 2013, p. 053503.
  • [50] Gmachl C., A. Straub, R. Colombelli, F. Capasso, D. L.Sivco, M. Sergent, A. Y. Cho, Single-Mode, Tunable Distributed-Feedback and Multiple-Wavelength Quantum Cascade Lasers, IEEE J. Quantum Electron., Vol. 18, No. 8, 2002, pp. 569-581.
  • [51] Yao Yu., K. J. Franz, X. Wang, Jen-Yu. Fan, C. Gmachl, A widely voltage-tunable quantum cascade laser based on “two-step” coupling, Appl. Phys. Lett., Vol. 95, 2009, 021105, pp. 1-3.
  • [52] Höfling S., J. Heinrich, J. P Reithmaier, A. Forchel, J. Seufert, M. Fischer, J. Koeth, Widely tunable single-mode quantum cascade lasers with two monolithically coupled Fabry-Pérot cavities, Appl. Phys. Lett. Vol. 89, 2006, p. 241126.
  • [53] Slivken S., N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, M. Razeghi, Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature, Appl. Phys. Lett. Vol. 100, 2012, p. 261112.
  • [54] Lee B. G., H. A. Zhang, Ch. Pflugl, L. Diehl, M. A. Belkin. M. Fischer, A. Wittmann, J. Faist, F. Capasso, Broad band Distributed-Feedback Quantum Cascade Laser array operating from 8.0 to 9.8 µm., IEEE Photon. Technol. Lett., Vol. 21, No. 13, 2009, pp. 914-916.
  • [55] Lee B. G., M. A. Belkin, C. Pflügl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P Bour, S. W. Corzine, G. E. Höfler, F. Capasso, DFB Quantum Cascade Laser Arrays, IEEE J. Quantum Electron., Vol. 45, No. 5, 2009, pp. 554-565.
  • [56] Lee B. G., M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, Ch. Pflügl, Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corine, G. Höfler, J. Faist, Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy, Appl. Phys. Lett. Vol. 91, 2007, p. 231101.
  • [57] Rauter P., S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. W. Turner, F. Capasso, Master-oscillator power-amplifier quantum cascade laser array, Appl. Phys. Lett. Vol. 101, 2012, p. 261117.
  • [58] Rauter P., S. Menzel, B. Gökden, A. K. Goyal, C. A. Wang, A. Sanchez, G. W. Turner, F. Capasso, Single-mode tapered quantum cascade lasers, Appl. Phys. Lett. Vol. 102, 2013, p. 181102.
  • [59] Mroziewicz B., External cavity wavelength tunable semiconductor lasers - a review, Opto-Electron. Rev. vol.16, No. 4, 2008, pp. 347-366.
  • [60] Luo G. P, C. Peng, H. Q. Le, S.-S. Pei, H. Lee, W.-Y. Hwang, B. Ishaug, J. Zheng, Broadly Wavelength-Tunable External Cavity Mid-Infrared Quantum Cascade Lasers, IEEE J. Quantum Electron., Vol. 18, No. 5, 2002, pp. 486-494.
  • [61] Beck M., J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, Buried Heterostructure Quantum Cascade Lasers with a Large Optical Cavity Waveguide, IEEE Photon. Technol. Lett., Vol. 12, No. 11, 2000, pp. 1450-1452.
  • [62] Hinkov B., Q. Yang, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, Time-resolved characterization of external-cavity quantum-cascade lasers, Appl. Phys. Lett. Vol. 94, 2009, p. 221105.
  • [63] Weida M. J., P. Buerki, E. Takeuchi, T. Day, External-cavity QCLs broaden capabilities for molecular detection, Laser Focus World, April 2010, pp. 58-62.
  • [64] Pabjańczyk A., R. Sarzała, M. Wasiak, M. Bugajski, Kwantowe lasery kaskadowe -podstawy fizyczne, Elektronika 5/2009, str. 30-43.
  • [65] Yang R. Q., S. S. Pei: Novel type-II quantum cascade lasers, J. Appl. Phys. Vol. 79, 1996, pp. 8197-8203.
  • [66] Yang R. ., J. L. Bradshaw, J. D. Bruno, J. T. Pham, D. T. Wortman, Mid-Infrared Type-II Interband Cascade Lasers, IEEE J. Quantum Electron., Vol. 38, No. 6, 2002, pp. 559-568.
  • [67] Kim C. S., M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, I. Vurgaftman, J. R. Meyer, Corrugated-sidewall interband cascade lasers with single-mode midwave-infrared emission at room temperature, Appl. Phys. Lett. Vol. 95, 2009, p. 231103.
  • [68] Liu Z., D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, F-S. Choa, Room-Temperature Continuous-Wave Quantum Cascade Lasers Grown by MOCVD Without Lateral Growth, IEEE Photon. Technol. Lett., Vol. 18, No.12, 2006, pp. 1347-1349.
  • [69] Wittmann A., M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, E. Gini: Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies, Appl. Phys. Lett., vol. 89, 2006, pp. 141116.
  • [70] Diehl L., D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lončar, M. Troccoli, F. Capasso, High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K, Appl. Phys. Lett. Vol. 88, 2006, p. 201115.
  • [71] Devenson J., O. Cathabard, R. Tessier, A. N. Baranov, High temperature operation of λ = 3.3 µm quantum cascade lasers, Appl. Phys. Lett. Vol. 91, 2007, p. 141106.
  • [72] Darvish S. R., S. Slivken, A. Evans, J. S. Yu, M. Razeghi, Room-temperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 9,6 µm, Appl. Phys. Lett. Vol. 88, 2006, p. 201114.
  • [73] Fujita K., T. Edamura, S. Furuda, M. Yamanishi, High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design, Appl. Phys. Lett. Vol. 96, 2010, p. 241107.
  • [74] Commin J. P., D. G. Revin, S. Y. Zhang, A. B. Krysa, K. Kennedy, J. W. Cockburn, High peak power λ ~ 3.3 and 3.5 µm InGaAs/AlAs (Sb) quantum cascade lasers operating up to 400 K, Appl. Phys. Lett. Vol. 97, 2010, p. 031108.
  • [75] Li H., S. Katz, A. Vizbaras, G. Boehm, M-Ch. Amann, High Efficiency Injectorless Quantum Cascade Lasers Emitting at 8.8 µm With 2-W Peak Pulsed Power per Facet at Room Temperature, IEEE Photon. Technol. Lett., Vol. 22, No. 24, 2010, pp. 1811-1813.
  • [76] Bai Y., S. Slivken, S. R. Darvish, M. Razeghi, Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency, Appl. Phys. Lett., Vol. 93, 2008, p. 021103.
  • [77] Lyakh A., C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. K. N. Patel, 1.6 W high wallplug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm, Appl. Phys. Lett.,Vol. 92, 2008, p. 111110.
  • [78] Maulini R., A. Lyakh, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, F. Capasso, C. K. Patel, High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings, Appl. Phys. Lett. Vol. 95, 2009, p. 151112-1.
  • [79] Lu Q. Y., Y. Bai, S. Slivken, N. Bandyopadhyay, M. Razeghi, 2,4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers, Appl. Phys. Lett. Vol. 98, 2011, p.181106.
  • [80] Bai Y., N. Bandyopadhyay, S. Tsao, S. Slivken, M. Razeghi, Room temperature quantum cascade lasers with 27% wall plug efficiency, Appl. Phys. Lett. Vol. 98, 2011, p.181102.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf51744d-0546-48d6-90ed-e2903c2fa911
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.