PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Factors affecting the mechanical properties of compact bone and miniature specimen test techniques: a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the review concerning mechanical properties of bone and the miniature specimen test techniques. For developing a realistic understanding of how factors such as moisture content, mineralization, age, species, location, gender, rate of deformation etc. affect the mechanical properties of bone, it is critical to understand the role of these factors. A general survey on existing research work is presented on this aspect. The essential features of miniature specimen test techniques are described, along with the application of small punch test method to evaluate the mechanical behavior of materials. The procedure for the determination of tensile and fracture properties, such as: yield strength, ultimate strength, ductility, fracture toughness etc. using small punch test technique have been described. The empirical equations proposed by various investigators for the prediction of tensile and fracture properties are presented and discussed. In some cases, the predictions of material properties have been essentially made through the finite element simulation. The finite element simulation of miniature specimen test technique is also covered in this review. The use of inverse finite element procedure for the prediction of uniaxial tensile constitutive behaviour of materials is also presented.
Twórcy
  • Department of Mechanical Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh, India
autor
  • Department of Mechanical Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh, India
autor
  • Department of Mechanical Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh, India
Bibliografia
  • 1. An Y.H. and Draughan R.A. Mechanical testing of bone and the bone-implant interface. CRC Press, Boca Raton, Florida, USA, 1999.
  • 2. ASTM E-399(97). Test method for plane-strain fracture toughness of metallic materials. Annual book of ASTM standards, ASTM International, Pa, 1997.
  • 3. Baik J.K., Kameda J. and Buck O. Development of small punch tests for ductile-brittle transition temperature measurement of temper embrittled Ni-Cr steel in the use of small scale specimens for testing irradiated material, ASTM STP 888, ASTM international, Pa, 1986, 92–110.
  • 4. Bathe K.J. Finite element procedures. Prentice Hall of India Private Limited. New Delhi, India, 1996.
  • 5. Bayoumi M.R. and Bassim M.N. Study of the relationship between fracture toughness (JIC) and bulge ductility. International Journal of Fracture, 23, 1983, 71–79.
  • 6. Beghini M., Bertini L. and Fontanari V. Evaluation of the flow curve of metallic materials by means of spherical indentation. Computational and Experimental Methods, 5, 2001, 241–252.
  • 7. Behiri J.C. and Bonfield W. Fracture mechanics of bone-the effects of density, specimen thickness, and crack velocity on longitudinal fracture. Journal of Biomechanics, 17, 1984, 25–34. 8.
  • 8. Behiri J.C. and Bonfield W. Orientation dependence of the fracture mechanics of cortical bone. Journal of Biomechanics, 22, 1989, 863–872.
  • 9. Behiri J.C. and Bonfield W. Crack velocity dependence of longitudinal fracture in bone. Journal of Materials Science, 15, 1980, 1841–1849.
  • 10. Bonfield W. Advances in the fracture mechanics of cortical bone. Journal of Biomechanics, 20, 1987, 1071–1081.
  • 11. Brookfield D.J., Li W., Rodgers B., Mottershead J.E., Hellen T.K., Jarvis J., Lohr R., Howard-Hildige R., Carlton A. and Whelan M. Material properties from small specimens using the punch and bulge test. Journal of Strain Analysis for Engineering Design, 34(6), 1999, 423–435.
  • 12. Brown C.U., Yeni Y.N., and Norman T.L. Fracture toughness is dependent on bone location - a study of the femoral neck, femoral shaft, and the tibial shaft. Journal of Biomedical Materials Research, 49, 2000, 380–389.
  • 13. Bucaille J.L., Staussb S., Felderc. E. and Michlera J. Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Materialia, 51(6), 2003, 1663–1678.
  • 14. Burstein A.H., Currey J.D., Frankel V.H. and Reilly D.T. The ultimate properties of bone tissue: the effects of yielding. Journal of Biomechanics, 5, 1972, 31–44.
  • 15. Carter D.R. and Hayes W.C. Fatigue life of compact bone-I: effects of stress amplitude, temperature and density. Journal of Biomechanics, 9, 1976, 27–34.
  • 16. Carter D.R. and Hayes W.C. Compact bone fatigue damage-I. residual strength and stiffness. Journal of Biomechanics, 10, 1977, 325–337.
  • 17. Cheon J. S. and Kim I. S. Initial deformation during small punch testing. Journal of Testing and Evaluation, 24(4), 1996, 255–262.
  • 18. Cheon J. S. and Joo C. H. Small punch test for determining a flow stress by using a hybrid inverse procedure. Computational Materials Science, 43, 2008, 744–751.
  • 19. Chittibabu V., Sehgal D.K. and Pandey R.K. Experimental and numerical studies on mechanical behaviour of bovine cortical bone using miniature specimen technique. Proc. of International Symposium for on Metallurgy, Materials Science and Engineering, Indian, Institute of Technology, Chennai, India, 2008, 18–23.
  • 20. Cordey J., Schneider M. and Buhler M. The epidemiology of fractures of the proximal femur. Int. J. Care, 31, 2000, 56–61.
  • 21. Courtney A. C., Watchel E. F., Myers E. R. and Hayes, W.C. Effects of loading rate on strength of the proximal femur. Calcified Tissue International, 55, 1994, 53–58.
  • 22. Courtney A.C., Hayes W.C. and Gibson L.J. Age related differences in post-yield damage in human cortical bone: experiment and model. Journal of Biomechanics, 29, 1996, 1463–1471.
  • 23. Cowin S.C. The mechanical and stress adaptive properties of bone. Annals of Biomedical Engineering, 2, 1983, 263–295.
  • 24. Currey J.D. Physical characteristics affecting the tensile failure properties of compact bone. Journal of Biomechanics, 23, 1990, 837–844. 25.
  • 25. Dao M., Chollacoop N., Van Vliet K.J., Venkatesh T.A. and Suresh S. Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Materialia, 49(19), 2001, 3899–3018.
  • 26. DiCarlo A., Yang H.T.Y. and Chandrasekar S. Semi-inverse method for predicting stress-strain relationship from cone indentations. Journal of Materials Research, 18(9), 2003, 2068–2078.
  • 27. Eck S.J. and Ardell A.J. Fracture toughness of Ti-46.5Al-2.1Cr-3.0Nb-0.2W from finite element analysis of miniaturized disk-bend test results. Intermetallics, 6(6), 1998, 471–477.
  • 28. Eskner M. and Sandstrom R. Mechanical property evaluation using the small punch test. Journal of Testing and Evaluation, 32(4), 2004, 282–289.
  • 29. Feng Z., Rho J., Han S. and Ziv I. Orientation and loading condition dependence of fracture toughness in cortical bone. Materials Science and Engineering C, 11, 2000, 41–46.
  • 30. Ferreira F., Vaz M. A. and Simoes J. A. Mechanical properties of bovine cortical bone at high strain rate. Materials Characterization, 57, 2006, 71–79.
  • 31. Fong W. L. and Fraser C. R. Evaluation of Ductility of Zircaloy-2 Materials Using a Small Ellipsoidal-Shaped Punch. ASTM STP 1329, ASTM International, Pa., 1998, 602–613.
  • 32. Foulds J.R., Woytowitz P.J., Parnell T.K. and Jewett C.W. Fracture Toughness by Small Punch Testing, Journal of Testing and Evaluation, 23(1), 1995, 3–10.
  • 33. Foulds J. R., Wu M., Srivastav S. and Jewett C. W. Fracture and tensile properties of ASTM crosscomparison exercise A533B steel by small punch testing. ASTM STP 1329, ASTM International, Pa., 1998, 557–574.
  • 34. Foulds, J. R., and Viswanathan, R. Nondisruptive material sampling and mechanical testing. Journal of Nondestructive Evaluation, 15(3 and 4), 1996, 151–162.
  • 35. Geary W. and Dutton J. T. Prediction of fracture toughness properties from 3 mm diameter punch discs. ASTM STP 1329, ASTM International, Pa., 1998, 588–601.
  • 36. Hainsworth S. V., Chandler H. W. and Page, T. F. Analysis of nanoindentation load-displacement loading curves. Journal of Materials Research, 11(8), 1996, 1987–1995.
  • 37. Hazenberg J.G., Taylor D. and Lee T. C. Mechanisms of short crack growth at constant stress in bone. Biomaterials, 27, 2006, 2114–2122.
  • 38. Hu R., Ling X. Three-dimensional numerical simulation on plastic damage in small punch specimen of zirconium. International Journal of Pressure Vessels and Piping, 86, 2009, 813–817.
  • 39. Husain A. Determination of mechanical behaviour of materials using miniature specimen test technique and finite element method. Ph. D. Thesis, IIT Delhi, New Delhi, 2003.
  • 40. Irwin G.R. Analysis of stresses and strains near the end of a crack traversing plate. Journal of Applied Mechanics, 6, 1957, 361–364.
  • 41. Kameda J., Bloomer T.E., Sugita Y., Ito A. and Sakurai S. Mechanical properties of aluminized CoCrAlY coating in advanced gas turbine blades. Journal of Material Science and Engineering A, 234–236, 1997, 489–492.
  • 42. Karthik V., Kasi Viswanathan K.V. and Baldev Raj. Determination of mechanical property gradients in heat-affected zones of ferritic steel weldments by shear-punch tests, small specimen test techniques: fourth volume ASTM STP 1418, ASTM International, Pa., 2002.
  • 43. Katsamanis F. and Demetrios D.R. Determination of mechanical properties of human femoral cortical bone by the hopkinson bar stress technique. Journal of Biomechanics, 23, 1990, 1173–1184.
  • 44. Knott J. F. Fundamentals of fracture mechanics, Butterworth and Co, London, 1976.
  • 45. Kotha S.P. and Guzelsu N. Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content. Journal of Biomechanics, 40, 2007, 36–45.
  • 46. Kumar, K., Pooleery, A., Madhusoodanan, K., Singh, R.N., Chakravartty, J.K., Dutta, B.K., and Sinha, R.K. Use of Miniature Tensile Specimen for measurement of mechanical properties. Procedia Engineering, 86, 2014, 899–909.
  • 47. Lang S.B. Ultrasonic method for measuring elastic coefficients of bone and results on fresh and dried bovine bone. IEEE Trans. on Bio. Eng., 1970, 101–105.
  • 48. Lee B., Choi Y., Lee Y., Kim J. and Dongil K. Determining stress-strain curves for thin films by experimental/ computational nanoindentation. Proc. Materials Research Society Symposium, Thin Films - Stresses and Mechanical Properties X, 795, 2003, 345–350.
  • 49. Lee W.K., Metzger D.R., Donner A. and Lepik O.E. Use of a small punch test procedure to determine mechanical properties, ASTM STP 1329, ASTM International, Pa., 1998, 539–556.
  • 50. Lucksanambool P., Higgs W.A.J., Higgs R.J.E.D., and Swain M.W. Fracture toughness of bovine bone: influence of orientation and storage media. Biomaterials, 22, 2001, 3127–3132.
  • 51. Manahan M.P. A New post irradiation mechanical behavior test-the miniaturized disk bend test. Nuclear Technology, 63, 1983, 295–315.
  • 52. Manahan M.P., Argon A.S. and Harling O.K. The development of a miniaturized disk bend test for the determination of post irradiation mechanical properties. Journal of Nuclear Materials, 104. 1981, 1545–50.
  • 53. Manahan M.P., Browning A.E., Argon A.S. and Harling O.K. Miniaturized disk bend test techniques-development and application. ASTM STP 888, ASTM International, Pa., 1986, 17–49.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf45c073-5f53-4f7d-87a2-ec217e36d7bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.