Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work reports on the investigation of homogeneity of the inside of indium micro-bumps/ columns placed on Ti/Pt/Au under bump metallisation. This is very important for connection resistivity, long-time durability, and subsequent hybridisation process (e.g., die-bonding). Gold reacts with indium to form intermetallic alloys with different chemo-physical parameters than pure indium. The geometrical and structural parameters of intermetallic alloys were analysed based on transmission electron microscope images. Distribution of elements in the investigated samples was determined using the transmission electron microscope with energy dispersive spectroscopy method. A thickness of intermetallic alloy was 1.02 μm and 1.67 μm in non-annealed (A) and annealed (B) indium columns, respectively. The layered and column-like interior structure of alloys was observed for both samples, respectively, with twice bigger grains in sample B. The graded chemical composition of Au-In intermetallic alloy was detected for the non-annealed In columns in contrast to the constant composition of 40% of Au and 60% of In for the annealed sample B. The atomic distribution has a minor impact on the In column mechanical stability. A yield above 99% of an In column with a 25 μm diameter and a 11 μm height is possible for a uniform columnar structure of intermetallic alloy with a thickness of 1.67 μm.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e148833
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
- Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02-668 Warsaw, Poland
autor
- Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02-668 Warsaw, Poland
autor
- Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02-668 Warsaw, Poland
autor
- Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02-668 Warsaw, Poland
autor
- Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02-668 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, ul. Wołoska 141, 02-507 Warsaw, Poland
Bibliografia
- [1] Huang, Y. Lin, C. Ye, Z.-H. & Ding, R.-J. Reflow flip-chip bonding technology for infrared detectors. J. Micromech. Microeng. 25, 085009 (2015). https://doi.org/10.1088/0960-1317/25/8/085009.
- [2] Walther, M. et al. Growth of InAs/GaSb short-period superlattices for high-resolution mid-wavelength infrared focal plane array detectors. J. Cryst. Growth 278, 156-161 (2005). https://doi.org/10.1016/j.jcrysgro.2004.12.044.
- [3] Breibach, J., Lübelsmeyer, K., Mäsing, T. & Rente, C. Development of a bump bonding interconnect technology for GaAs pixel detectors. Nucl. Instrum. Methods Phys. Res. A 470, 576-582 (2001). https://doi.org/10.1016/S0168-9002(01)00785-9.
- [4] Huang, Q., Xu, G., Yuan, Y., Cheng, X. & Luo, L. Development of indium bumping technology through AZ9260 resist electroplating. J. Micromech. Microeng. 20, 055035 (2010). https://doi.org/10.1088/0960-1317/20/5/055035.
- [5] Sjödin, S. A. Indium bump fabrication using electroplating for flip chip bonding. (Mid Sweden University, 2016).
- [6] Chu, K.-M., Lee, J.-S., Cho, H.-S., Park, H.-H. & Jeon, D.-Y. A Fluxless Flip-Chip Bonding for VCSEL Arrays Using Silver-Coated Indium Solder Bumps. in 2004 International IEEE Conference on the Asian Green Electronics (AGEC) 246-253 (IEEE, 2004). https://doi.org/10.1109/TEPM.2004.843155.
- [7] Kanazawa, S. et al. 214-Gb/s 4-PAM operation of flip-chip interconnection EADFB laser module. J. Light. Technol. 35, 418-422 (2017). https://doi.org/10.1109/JLT.2016.2632164.
- [8] Bah, M. A. et al. Indium bump deposition for flip-chip micro-array image sensing and display applications. Proc. SPIE 10639, 106392I (2018). https://doi.org/10.1117/12.2303735.
- [9] Long, J. P., Varadaraajan, S., Matthews, J., Schetzina, J. F. & Schetzina, J. F. UV detectors and focal plane array imagers based on AlGaN p-i-n photodiodes. Opto-Electron. Rev. 10, 251-260 (2002). https://optor.wat.edu.pl/10(4)251.pdf.
- [10] Tomada, A. et al. Flip Chip Assembly of Thin Substrates, Fine Bump Pitch, And Small Prototype Die. Slack-Pub16168 (SLAC National Accelerator Laboratory). (2014). https://www.slac.stanford.edu/pubs/slacpubs/16000/slac-pub-16168.pdf.
- [11] Jiang, J., Tsao, S., O’Sullivan, T., Razeghi, M. & Brown, G. J. Fabrication of indium bumps for hybrid infrared focal plane array applications. Infrared Phys. Technol. 45, 143-151 (2004). https://doi.org/10.1016/j.infrared.2003.08.002.
- [12] Broennimann, C. et al. Development of an Indium bump bond process for silicon pixel detectors at PSI. Nucl. Instrum. Methods Phys. Res. A 565, 303-308 (2006). https://doi.org/10.1016/j.nima.2006.05.011.
- [13] Lian, J., Jan, S., Chun, W., Goorsky, M. S. & Wang, J. Mechanical behavior of Au–In intermetallics for low temperature solder diffusion bonding. J. Mater. Sci. 44, 6155-6161 (2009). https://doi.org/10.1007/s10853-009-3851-7.
- [14] Kozłowski, P. et al. Indium-based micro-bump array fabrication technology with added pre-reflow wet etching and annealing. Materials 14, 6269 (2021). https://doi.org/10.3390/ma14216269.
- [15] Dantas de Morais, L., Chevalliez, S. & Mouleres, L. Low temperature FIB cross section: Application to indium micro bumps. Microelectron. Reliab. 54, 1802-1805 (2014). https://doi.org/10.1016/j.microrel.2014.08.004.
- [16] Siekhaus, W. J. et al. Reaction of Gold with Indium Below 50°C: Radius Loss Delta R and Standard Deviation Sigma of Soldered 4 mil Wires at 100 Years Predicted from Measured Delta R and Sigma at 30 Years. US Department of Energy, LLNL-TR-637432 (2013). https://www.osti.gov/servlets/purl/1084699.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf33e884-f002-4e0a-9df2-f033fdd64378