Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The increasing volume of wastewater discharged in urban areas poses a significant environmental challenge, particularly due to the potential for organic carbon overload in aquatic ecosystems. This study aimed to identify the bacterial isolates with the potential to mitigate this burden by effectively degrading organic matter and exhibiting antagonistic activity against common aquatic pathogens. Through a screening process, two bacterial strains, Bacillus amyloliquefaciens and Bacillus licheniformis, were isolated based on their high amylolytic, cellulolytic, proteolytic and lipolytic activity indices. In addition, in relation to all effective strains for these activities, Bacillus amyloliquefaciens differed in the cellulolytic index (4.48 ± 0.12), while Bacillus licheniformis had a lipolytic index of 1.73 ± 0.10. Both strains were further characterized by their strong antagonistic activity against Aeromonas, a prevalent pathogen in aquatic environments. These findings suggest that B. amyloliquefaciens and B. licheniformis hold promise as bioremediation agents for wastewater treatment, potentially contributing to the sustainable management of urban wastewater and the protection of aquatic ecosystems.
Czasopismo
Rocznik
Tom
Strony
55--69
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
autor
- Republican Collection of Microorganisms, Astana, 010000, Kazakhstan
autor
- Republican Collection of Microorganisms, Astana, 010000, Kazakhstan
autor
- Republican Collection of Microorganisms, Astana, 010000, Kazakhstan
autor
- Republican Collection of Microorganisms, Astana, 010000, Kazakhstan
autor
- Republican Collection of Microorganisms, Astana, 010000, Kazakhstan
autor
- Republican Collection of Microorganisms, Astana, 010000, Kazakhstan
autor
- Department of Environmental Engineering and Management, The University of Dodoma, P.O. Box 259, Dodoma, Tanzania
autor
- Republican Collection of Microorganisms, Astana, 010000, Kazakhstan
Bibliografia
- 1. Uddin MG, Nash S, Rahman A, Olbert AI. 2023. Assessing optimization techniques for improving water quality model. Journal of Cleaner Production 385: 135671.
- 2. Ahani S, Dadashpoor H. 2021. A review of domains, approaches, methods and indicators in peri-urbanization literature. Habitat International 114: 102387.
- 3. Byrns G. 2001. The fate of xenobiotic organic compounds in wastewater treatment plants. Water Research 35: 2523–2533.
- 4. Sudarshan S, Harikrishnan S, RathiBhuvaneswari G, Alamelu V, Aanand S, Rajasekar A, Govarthanan M. 2023. Impact of textile dyes on human health and bioremediation of textile industry effluent using microorganisms: current status and future prospects. Journal of Applied Microbiology 134: lxac064.
- 5. Dionisi D. 2014. Potential and limits of biodegradation processes for the removal of organic xenobiotics from wastewaters. ChemBioEng Reviews 1: 67–82.
- 6. Preisner M, Neverova-Dziopak E, Kowalewski Z. 2021. Mitigation of eutrophication caused by wastewater discharge: A simulation-based approach. Ambio 50: 413–424.
- 7. Beristain-Cardoso R, Texier A-C, Alpuche-Solís Á, Gómez J, Razo-Flores E. 2009. Phenol and sulfide oxidation in a denitrifying biofilm reactor and its microbial community analysis. Process Biochemistry 44: 23–28.
- 8. Potivichayanon S, Pokethitiyook P, Kruatrachue M. 2006. Hydrogen sulfide removal by a novel fixed-film bioscrubber system. Process Biochemistry 41: 708–715.
- 9. Vajargah MF, Ramzanipour MM, Mousavi SP. 2023. An overview of municipal wastewater and sludge treatment process. ECOA 2.
- 10. Ahmed AS, Bahreini G, Ho D, Sridhar G, Gupta M, Wessels C, Marcelis P, Elbeshbishy E, Rosso D, Santoro D, Nakhla G. 2019. Fate of cellulose in primary and secondary treatment at municipal water resource recovery facilities. Water Environment Research 91: 1479–1489.
- 11. Mantis I, Voutsa D, Samara C. 2005. Assessment of the environmental hazard from municipal and industrial wastewater treatment sludge by employing chemical and biological methods. Ecotoxicology and Environmental Safety 62: 397–407.
- 12. Chan YJ, Chong MF, Law CL, Hassell DG. 2009. A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal 155: 1–18.
- 13. Kataki S, Chatterjee S, Vairale MG, Dwivedi SK, Gupta DK. 2021. Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate). Journal of Environmental Management 283: 111986.
- 14. Zhang B, Ning D, Yang Y, Van Nostrand JD, Zhou J, Wen X. 2020. Biodegradability of wastewater determines microbial assembly mechanisms in full-scale wastewater treatment plants. Water Research 169: 115276.
- 15. Ewida AYI. 2020. Bio-treatment of maize processing wastewater using indigenous microorganisms. Sustain Environ Res 30: 3.
- 16. LaRowe DE, Van Cappellen P. 2011. Degradation of natural organic matter: A thermodynamic analysis. Geochimica et Cosmochimica Acta 75: 2030–2042.
- 17. Sariaslani FS, Dalton H. 1989. Microbial enzymes for oxidation of organic molecules. Critical Reviews in Biotechnology 9: 171–257.
- 18. Dai J, Sun M-Y. 2007. Organic matter sources and their use by bacteria in the sediments of the Altamaha estuary during high and low discharge periods. Organic Geochemistry 38: 1–15.
- 19. Bátori V, Åkesson D, Zamani A, Taherzadeh MJ, Sárvári Horváth I. 2018. Anaerobic degradation of bioplastics: A review. Waste Management 80: 406–413.
- 20. Xiao K, Abbt-Braun G, Horn H. 2020. Changes in the characteristics of dissolved organic matter during sludge treatment: A critical review. Water Research 187: 116441.
- 21. Chatterjee B, Mandal S, Mazumder D. 2019. Bio degradation study of cellulose bearing synthetic wastewater in activated sludge system. J. Indian Chem. Soc. 96
- 22. Bukola D, Zaid A. 2015. Consequences of anthropogenic activities on fish and the aquatic environment. Poult Fish Wildl Sci 03.
- 23. Temirbekova A, Tekebayeva Z, Temirkhanov A, Yevneyeva D, Sadykov A, Meiramkulova K, Mkili ma T, Abzhalelov A. 2023. Isolation and characterization of bacteria with high electroactive potential from poultry wastewater. Biology 12: 623.
- 24. Tekebayeva Z, Temirbekova A, Bazarkhankyzy A, Bissenova G, Abzhalelov A, Tynybayeva I, Temirkhanov A, Askarova N, Mkilima T, Sarmurzina Z. 2022. Selection of Active microorganism strains isolated from a naturally salty lake for the investigation of different microbial potentials. Sustainability 15: 51.
- 25. Crawford RL. 2011. Biodegradation: principles, scope, and technologies, 4–14, Comprehensive Biotechnology. Elsevier.
- 26. Gallert C, Winter J. 2004. Bacterial metabolism in wastewater treatment systems, 1–48, In Jördening H, Winter J (eds.), Environmental Biotechnology, 1st Ed.. Wiley.
- 27. Lin CY, Tjeerdema RS. 2008. Crude oil, oil, gasoline and petrol, 797–805, Encyclopedia of Ecology. Elsevier.
- 28. Tokatli C. 2020. Use of water quality index to evaluate the groundwater characteristics of villages located in Edirne Province. International Journal of Agriculture Environment and Food Sciences 4: 362–367.
- 29. Almutairi M. 2020. Method development for evaluating the effectiveness of hydrocarbons on BOD, UBOD and COD removal in oily wastewater. Water Science and Technology 81: 2650–2663.
- 30. Pailin T, Kang DH, Schmidt K, Fung DYC. 2001. Detection of extracellular bound proteinase in EPS-producing lactic acid bacteria cultures on skim milk agar. Lett Appl Microbiol 33: 45–49.
- 31. Lokapirnasari WP, Nazar DS, Nurhajati T, Suprani anondo K, Yulianto AB. 2015. Production and assay of cellulolytic enzyme activity of Enterobacter cloacae WPL 214 isolated from bovine rumen fluid waste of Surabaya abbatoir, Indonesia. Vet World 8: 367–371.
- 32. Rawway M, Ali SG, Badawy AS. 2018. Isolation and identification of cellulose degrading bacteria from different sources at assiut governorate (Upper Egypt). J. Eco. Heal. Env 6: 15–24.
- 33. Yufidasari HS, Astuti RT, Waluyo E, Malau J. 2022. Characterization of predicted bacterial cold-adapted lipase from seafood cold storage. Int. J. Res. Granthaalayah 9: 242–250.
- 34. Naresh S, Kunasundari B, Gunny AAN, Teoh YP, Shuit SH, Ng QH, Hoo PY. 2019. Isolation and partial characterisation of thermophilic cellulolytic bacteria from north malaysian tropical mangrove soil. tlsr 30: 123–147
- 35. Reinke RA, Quach-Cu J, Allison N, Lynch B, Crisostomo C, Padilla M. 2020. A method to quantify viable carbapenem resistant gram-negative bacteria in treated and untreated wastewater. Journal of Microbiological Methods 179: 106070.
- 36. Wang X, Liang L, Shao H, Ye X, Yang X, Chen X, Shi Y, Zhang L, Xu L, Wang J. 2022. Isolation of the novel strain bacillus amyloliquefaciens F9 and identification of lipopeptide extract components responsible for activity against xanthomonas citri subsp. citri. Plants 11: 457.
- 37. Aktayeva S, Baltin K, Kiribayeva A, Akishev Z, Silayev D, Ramankulov Y, Khassenov B. 2022. Isolation of Bacillus sp. A5.3 Strain with Keratinolytic Activity. Biology 11: 244.
- 38. Nascimento APA, de Farias BO, Gonçalves-Brito AS, Magaldi M, Flores C, Quidorne CS, Montenegro KS, Bianco K, Clementino MM. 2023. Phylogenomics analysis of multidrug-resistant Elizabethkingia anophelis in industrial wastewater treatment plant. Journal of Applied Microbiology 134: lxad215.
- 39. Tandi Ruba Y, Nuraida L, Iswantini D, Prangdimur E. 2020. Proteolytic activity of indigenous lactic acid bacteria and angiotensin-i-converting enzyme (ACE) inhibitory activity in fermented soy milk. Pakistan J. of Nutrition 19: 295–302.
- 40. Mkilima T. 2023. Groundwater salinity and irrigation suitability in low-lying coastal areas. A case of Dar es Salaam, Tanzania. Watershed Ecology and the Environment 5: 173–185.
- 41. Robertson GP, Hamilton SK, Barham BL, Dale BE, Izaurralde RC, Jackson RD, Landis DA, Swinton SM, Thelen KD, Tiedjeet JM. 2017. Cellulosic biofuel contributions to a sustainable energy future: Choices and outcomes. Science 356: eaal2324.
- 42. Maghraby YR, El-Shabasy RM, Ibrahim AH, Azzazy HME-S. 2023. Enzyme immobilization technologies and industrial applications. ACS Omega 8: 5184–5196.
- 43. Rana Chhetri B, Silwal P, Jyapu P, Maharjan Y, Lamsal T, Basnet A. 2022. Biodegradation of organic waste using bacillus species isolated from soil. Int J Appl Sci Biotechnol 10: 104–111.
- 44. Waqas M, Haris M, Asim N, Islam HU, Abdullah A, Khan A, Khattak H, Waqas M, Ali S. 2021. Biodegradable potential of bacillus amyloliquefaciens and bacillus safensis using low density polyethylene thermoplas tic (LDPE) substrate. European J Env Publi 5: em0069.
- 45. The optimization of fermentation conditions for€producing cellulase of Bacillus amyloliquefaciens and its application to goose€feed.
- 46. Buckel W. 2021. Energy conservation in fermentations of anaerobic bacteria. Front. Microbiol. 12: 703525.
- 47. Shin H-S, Song Y-C. 1995. A model for evaluation of anaerobic degradation characteristics of organic waste: focusing on kinetics, rate-limiting step. Environmental Technology 16: 775–784.
- 48. Peng Y, Zhang S, Zeng W, Zheng S, Mino T, Satoh H. 2008. Organic removal by denitritation and methanogenesis and nitrogen removal by nitritation from landfill leachate. Water Research 42: 883–892.
- 49. Zdanowicz M, Mudryk ZJ, Perliński P. 2020. Abundance and antibiotic resistance of Aeromonas isolated from the water of three carp ponds. Vet Res Commun 44: 9–18.
- 50. Mudryk ZJ, Perliński P, Gackowska J. Antibiotic resistance of Aeromonas spp. Isolated from sea water and sand of marine recreation beach in the southern Baltic sea.
- 51. Cao H, He S, Wei R, Diong M, Lu L. 2011. Bacillus amyloliquefaciens G1: A potential antagonistic bacterium against eel‐pathogenic Aeromonas hydrophila. Evidence-Based Complementary and Alternative Medicine 2011: 824104.
- 52. Giri SS, Sukumaran V, Sen SS, Vinumonia J, Banu BN, Jena PK. 2011. Antagonistic Activity of Cellular Components of Potential Probiotic Bacteria, Isolated from the Gut of Labeo rohita, Against Aeromonas hydrophila. Probiotics & Antimicro. Prot. 3: 214–222.
- 53. Anjur N, Sabran SF, Daud HM, Othman NZ. 2021. An update on the ornamental fish industry in Malaysia: Aeromonas hydrophila-associated disease and its treatment control. Vet World 1143–1152.
- 54. Tang RY, Wu ZL, Wang GZ, Liu WC. 2018. The effect of Bacillus amyloliquefaciens on productive performance of laying hens. Italian Journal of Animal Science 17: 436–441.
- 55. Wróbel M, Śliwakowski W, Kowalczyk P, Kramkowski K, Dobrzyński J. 2023. Bioremediation of heavy metals by the genus bacillus. IJERPH 20: 4964.
- 56. Dutta D, Arya S, Kumar S. 2021. Industrial wastewater treatment: Current trends, bottlenecks, and best practices. Chemosphere 285: 131245.
- 57. Du H, Yao W, Kulyar MF-A, Ding Y, Zhu H, Pan H, et al. 2022. Effects of Bacillus amyloliquefaciens TL106 Isolated from Tibetan Pigs on Probiotic Potential and Intestinal Microbes in Weaned Piglets. Microbiol Spectr 10: e01205-21.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf2c8c05-66f3-451d-8d5b-8707fab7853e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.