PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modified Couple Stress Theory for Micro-Machined Beam Resonators with Linearly Varying Thickness and Various Boundary Conditions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article employs the classical Euler–Bernoulli beam theory in connection with Green–Naghdi’s generalized thermoelasticity theory without energy dissipation to investigate the vibrating microbeam. The microbeam is considered with linearly varying thickness and subjected to various boundary conditions. The heat and motion equations are obtained using the modified couple stress analysis in terms of deflection with only one material length-scale parameter to capture the size-dependent behavior. Various combinations of free, simply-supported, and clamped boundary conditions are presented. The effect of length-to-thickness ratio, as well as the influence of both couple stress parameter and thermoelastic coupling, are all discussed. Furthermore, the effect of reference temperature on the eigenfrequency is also investigated. The vibration frequencies indicate that the tapered microbeam modeled by modified couple stress analysis causes more responses than that modeled by classical continuum beam theory, even the thermoelastic coupled is taken into account.
Rocznik
Strony
43--64
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
  • Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
  • Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
Bibliografia
  • [1] E. Cosserat and F. Cosserat. Theory of Deformable Bodies. Herman et Fils, Paris (1909).
  • [2] R.A. Toupin. Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis, 11(1):385–414, 1962. doi: 10.1007/BF00253945.
  • [3] R.D. Mindlin and H.F. Tiersten. Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and Analysis, 11:415–448, 1962. doi: 10.1007/BF00253946.
  • [4] W.T. Koiter. Couple-stresses in the theory of elasticity: I and II. Proc. K. Ned. Akad. Wet.-Amsterdam B, 67:17–44, 1964.
  • [5] G. Tiwari. Effect of couple-stresses in a semi-infinite elastic medium due to impulsive twist over the surface. Pure and Applied Geophysics, 91(1):71–75, 1971.
  • [6] M. Braun. Linear Elasticity with Couple Stresses. In J.-F. Ganghoffer and F. Pastrone, editors, Mechanics of Microstructured Solids 2. Volume 50 of the series Lecture Notes in Applied and Computational Mechanics, pages 1–8, 2010. doi: 10.1007/978-3-642-05171-5_1.
  • [7] F. Yang, A.C.M. Chong, D.C.C. Lam and P. Tong. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39(10):2731–2743, 2002. doi: 10.1016/S0020-7683(02)00152-X.
  • [8] S.K. Park and X.-L. Gao. Bernoulli-Euler beam model based on a modified couple stress theory. Journal of Micromechanics and Microengineering, 16(11):2355–2359, 2006. doi: 10.1088/0960-1317/16/11/015.
  • [9] S.K. Park and X.-L. Gao. Variational formulation of a modified couple stress theory and its application to a simple shear problem. Zeitschrift für angewandte Mathematik und Physik, 59(5):904–917, 2008. doi: 10.1007/s00033-006-6073-8.
  • [10] H.M. Ma, X.-L. Gao and J.N. Reddy. A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. Journal of the Mechanics and Physics of Solids, 56(12):3379–3391, 2008. doi: 10.1016/j.jmps.2008.09.007.
  • [11] H.M. Ma, X.-L. Gao and J.N. Reddy. A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mechanica, 220(1-4):217–235, 2011. doi: 10.1007/s00707-011-0480-4.
  • [12] G.C. Tsiatas. A new Kirchhoff plate model based on a modified couple stress theory. International Journal of Solids and Structures, 46(13):2757–2764, 2009. doi: 10.1016/j.ijsolstr.2009.03.004.
  • [13] L. Yin, Q. Qian, L. Wang and W. Xia. Vibration analysis of microscale plates based on modified couple stress theory. Acta Mechanica Solida Sinica, 23(5):386–393, 2010. doi: 10.1016/S0894-9166(10)60040-7.
  • [14] Y. Fu and J. Zhang. Modeling and analysis of microtubules based on a modified couple stress theory. Physica E: Low-dimensional Systems and Nanostructures, 42(5):1741–1745, 2010. doi: 10.1016/j.physe.2010.01.033.
  • [15] U. Güven. The investigation of the nonlocal longitudinal stress waves with modified couple stress theory. Acta Mechanica, 221(3-4):321–325, 2011. doi: 10.1007/s00707-011-0500-4.
  • [16] J.N. Reddy and A. Arbind. Bending relationships between the modified couple stress-based functionally graded Timoshenko beams and homogeneous Bernoulli–Euler beams. Annals of Solid and Structural Mechanics, 3(1-2):15–26, 2012. doi: 10.1007/s12356-012-0026-z.
  • [17] W. Chen and X. Li. Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory. Archive of Applied Mechanics, 83(3):431–444, 2013. doi: 10.1007/s00419-012-0689-2.
  • [18] X.-L. Gao, J.X. Huang and J.N. Reddy. A non-classical third-order shear deformation plate model based on a modified couple stress theory. Acta Mechanica, 224(11):2699–2718, 2013. doi: 10.1007/s00707-013-0880-8.
  • [19] Y-G.Wang,W-H. Lin and C-L. Zhou. Nonlinear bending of size-dependent circular microplates based on the modified couple stress theory. Archive of Applied Mechanics, 84(3):391–400, 2014. doi: 10.1007/s00419-013-0807-9.
  • [20] W. Chen and X. Li. A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model. Archive of Applied Mechanics, 84(3):323–341, 2014. doi: 10.1007/s00419-013-0802-1.
  • [21] H. Darijani and A.H. Shahdadi. A new shear deformation model with modified couple stress theory for microplates. Acta Mechanica, 226(8):2773–2788, 2015. doi: 10.1007/s00707-015-1338-y.
  • [22] H. Zeighampour and Y.T. Beni. A shear deformable cylindrical shell model based on couple stress theory. Archive of Applied Mechanics, 85(4):539–553, 2015. doi: 10.1007/s00419-014-0929-8.
  • [23] A.R. Setoodeh, M. Rezaei, and M.R. Zendehdel Shahri. Linear and nonlinear torsional free vibration of functionally graded micro/nano-tubes based on modified couple stress theory. Applied Mathematics and Mechanics, 37(6):725–740, 2016. doi: 10.1007/s10483-016-2085-6.
  • [24] R. Sourki and S.A.H. Hoseini. Free vibration analysis of size-dependent cracked microbeam based on the modified couple stress theory. Applied Physics A, 122(413):1–11, 2016. doi: 10.1007/s00339-016-9961-6.
  • [25] M. Asghari, M.H. Kahrobaiyan, M. Rahaeifard, and M.T. Ahmadian. Investigation of the size effects in Timoshenko beams based on the couple stress theory. Archive of Applied Mechanics, 81(7):863–874, 2011. doi: 10.1007/s00419-010-0452-5.
  • [26] U. Güven. Two mode Mindlin–Herrmann rod solution based on modified couple stress theory. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 94(12):1011–1016, 2014. doi: 10.1002/zamm.201300066.
  • [27] G.C. Tsiatas and A.J. Yiotis. Size effect on the static, dynamic and buckling analysis of orthotropic Kirchhoff-type skew micro-plates based on a modified couple stress theory: comparison with the nonlocal elasticity theory. Acta Mechanica, 226:1267–1281, 2015. doi: 10.1007/s00707-014-1249-3.
  • [28] R. Ansari, M.A. Ashrafi, and A. Arjangpay. An exact solution for vibrations of postbuckled microscale beams based on the modified couple stress theory. Applied Mathematical Modelling, 39(10–11):3050–3062, 2015. doi: 10.1016/j.apm.2014.11.029.
  • [29] Y.S. Li and E. Pan. Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory. International Journal of Engineering Science, 97:40–59, 2015. doi: 10.1016/j.ijengsci.2015.08.009.
  • [30] Y.T. Beni, F. Mehralian, and H. Razavi. Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory. Composite Structures, 120:65–78, 2015. doi: 10.1016/j.compstruct.2014.09.065.
  • [31] H. Salehipour, H. Nahvi, and A.R. Shahidi. Exact closed-form free vibration analysis for functionally graded micro/nano plates based on modified couple stress and three-dimensional elasticity theories. Composite Structures, 124:283–291, 2015. doi: 10.1016/j.compstruct.2015.01.015.
  • [32] J. Lou and L. He. Closed-form solutions for nonlinear bending and free vibration of functionally graded microplates based on the modified couple stress theory. Composite Structures, 131:810–820, 2015. doi: 10.1016/j.compstruct.2015.06.031.
  • [33] J. Lou, L. He, and J. Du. A unified higher order plate theory for functionally graded microplates based on the modified couple stress theory. Composite Structures, 133:1036–1047, 2015. doi: 10.1016/j.compstruct.2015.08.009.
  • [34] M. Ghadiri and N. Shafiei. Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions.Acta Astronautica, 121:221–240, 2016. doi: 10.1016/j.actaastro.2016.01.003.
  • [35] E.K. Kakhki, S.M. Hosseini, and M. Tahani. An analytical solution for thermoelastic damping in a micro-beam based on generalized theory of thermoelasticity and modified couple stress theory. Applied Mathematical Modelling, 40(4):3164–3174, 2016. doi: 10.1016/j.apm.2015.10.019.
  • [36] R. Kumar, S. Devi, and V. Sharma. A problem of thick circular plate in modified couple stress thermoelastic diffusion with phase-lags. Multidiscipline Modeling in Materials and Structures, 12(3):478–494, 2016. doi: 10.1108/MMMS-09-2015-0054.
  • [37] R. Kumar and S. Devi. Effect of phase-lag on thick circular plate with heat sources in modified couple stress thermoelastic medium. Journal of Mechanics, 32(6):665–671, 2016. doi: 10.1017/jmech.2016.25.
  • [38] R. Kumar and S. Devi. Thermoelastic beam in modified couple stress thermoelasticity induced by laser pulse. Computers and Concrete, 19(6):701–710, 2017. doi: 10.12989/cac.2017.19.6.701.
  • [39] W. Nowacki. Couple-Stresses in the Theory of Thermoelasticity. In H. Parkus et al., editors, Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids, Part of the series IUTAM Symposia, pages 259–278, 1968. doi: 10.1007/978-3-7091-5581-3_17.
  • [40] G. Rezazadeh, A. S. Vahdat, S. Tayefeh-rezaei and C. Cetinkaya. Thermoelastic damping in a micro-beam resonator using modified couple stress theory. Acta Mechanica, 223(6):1137–1152, 2012. doi: 10.1007/s00707-012-0622-3.
  • [41] E. Taati, M. M.Najafabadi and H. B. Tabrizi. Size-dependent generalized thermoelasticity model for Timoshenko microbeams. Acta Mechanica, 225(7):1823–1842, 2014. doi: 10.1007/s00707-013-1027-7.
  • [42] R. Kumar, K. Kumar and R.C. Nautiyal. Plane waves and fundamental solution in a couple stress generalized thermoelastic solid. Afrika Matematika, 25(3):591–603, 2014. doi: 10.1007/s13370-013-0136-8.
  • [43] Z-Y. Zhong, W-M. Zhang, G. Meng, and M-Y. Wang. Thermoelastic damping in the size-dependent microplate resonators based on modified couple stress theory. Journal of Microelectromechanical Systems, 24(2):431–445, 2015. doi: 10.1109/JMEMS.2014.2332757.
  • [44] R. Kumar. Response of thermoelastic beam due to thermal source in modified couple stress theory. CMST, 22(2):95–101, 2016. doi: 10.12921/cmst.2016.22.02.004.
  • [45] A.M. Zenkour. Elastic behaviour of an orthotropic beam/one-dimensional plate of uniform and variable thickness. Journal of Engineering Mathematics, 44(4):331–344, 2002. doi: 10.1023/A:1021255410184.
  • [46] A.M. Zenkour. Thermoelastic solutions for annular disks with arbitrary variable thickness. Structural Engineering and Mechanics, 24(5):515–528, 2006. doi: 10.12989/sem.2006.24.5.515.
  • [47] A.M. Zenkour. Stresses in cross-ply laminated circular cylinders of axially variable thickness. Acta Mechanica, 187(1–4):85–102, 2006. doi: 10.1007/s00707-006-0356-1.
  • [48] A.M. Zenkour, M.N.M. Allam, and D.S. Mashat. Linear bending analysis of inhomogeneous variable-thickness orthotropic plates under various boundary conditions. International Journal of Computational Methods, 4(3):417–438, 2007. doi: 10.1142/S021987620700128X.
  • [49] M.N.M. Allam, A.M. Zenkour, and E.R. Elazab. The rotating inhomogeneous elastic cylinders of variable-thickness and density. Applied Mathematics & Information Sciences, 2(3):237–257, 2008.
  • [50] A.M. Zenkour and D.S. Mashat. Exact solutions for variable-thickness inhomogeneous elastic plates under various boundary conditions. Meccanica, 44(4):433–447, 2009. doi: 10.1007/s11012-008-9181-z.
  • [51] A.M. Zenkour. Stresses in a rotating variable-thickness heterogeneous viscoelastic composite cylinder. Applied Mathematics and Mechanics – Engl. Ed., 32(4):1–14, 2011. doi: 10.1007/s10483-011-1434-9.
  • [52] D. Grover. Viscothermoelastic vibrations in micro-scale beam resonators with linearly varying thickness. Canadian Journal of Physics, 90(5):487–496, 2012. doi: 10.1139/p2012-044.
  • [53] B. Akgöz and Ö. Civalek. Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory. Composite Structures, 98:314–322, 2013. doi: 10.1016/j.compstruct.2012.11.020.
  • [54] D.S. Mashat and A.M. Zenkour. Hygrothermal bending analysis of a sector-shaped annular plate with variable radial thickness. Composite Structures, 113:446–458, 2014. doi: 10.1016/j.compstruct.2014.03.044.
  • [55] L.V. Kantorovich and V.I. Krylov. Approximate methods of higher analysis. Moscow, Fismatgiz, 1962.
  • [56] Y. Sun and M. Saka. Thermoelastic damping in micro-scale circular plate resonators. Journal of Sound and Vibrations, 329(3):328–337, 2010. doi: 10.1016/j.jsv.2009.09.014.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf2c8acb-8b5b-4bf3-9c8b-1cc027bd6816
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.