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1 INTRODUCTION 

The signal spectrum is its image or, in other words, its 
representation in the frequency domain. And, it is 
generally agreed among researchers and engineers 
that all the non-pathological, deterministic, and non-
periodic signals exploited in the area of signal 
processing possess such the representation. It is a 
Fourier transform of a given signal. 

Similarly, all the periodic signals can be 
represented by their Fourier series. So, their frequency 
images can be considered as discrete spectra, what is 
visualized in Fig. 1. 

 

Figure 1. Visualization of the discrete spectrum of an 
example periodic signal. 

In Fig. 1, ( )c k  means the k-th coefficient in the 
Fourier series of a periodic signal considered. 

Note that in general the coefficient ( )c k  is a 
complex number. It is connected with the frequency 

0kf , what makes possible to treat the set of all ( )c k ’s 
as a set of values of a certain function of f  
(spectrum). Because of this reason ( )c k  is used here 
to denote also, in short, this function. Moreover, f  
and 

0f  in Fig. 1 stand for the frequency variable and 
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the so-called fundamental frequency (fundamental 
harmonic) in the spectrum of this signal. 

The common belief among researchers and 
engineers is that both kinds of the spectra mentioned 
above, i.e. the continuous spectrum related with the 
Fourier transform and the discrete one connected with 
the Fourier series, fit to each other in some way. 
However, this is only an illusion. Why? Because of 
many reasons. But, probably, the most important one 
follows from the fact that the spectrum of a periodic 
signal, say ( )px t , where t  means a continuous 
time variable, cannot be calculated in a “normal way” 
via the Fourier transform.  

What we understand by the “normal way of 
calculation” mentioned above is illustrated in (1) 
below: 
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In (1), 
01T f=  denotes the period of the 

periodic signal ( )px t , ( )pX f  its Fourier transform 
(if exists?), 1j = − , and the function ( )PARTX f  is 
one of the identical components of an infinite sum 
there. Obviously, this component cannot be 
identically equal to zero for all frequencies. Therefore, 
there are bands of frequencies for which (1) results in 
infinite values. And, this is the interpretation of what 
is expressed in (1). 

Further, the above description of ( )pX f  shows 
that by no means it can resemble that what is 
presented in Fig. 1. So, because of this fact, it seems 
that only reasonable conclusion here is the following 
one: signal spectra obtained as their Fourier 
transforms are not compatible with those following 
from the Fourier expansions (having the form of the 
one visualized in Fig. 1). And, obviously, this is a 
huge problem in cases where both the periodic and 
non-periodic signals occur together in a system or 
circuit, in a mixed form. One of the representative 
examples here are the operations of sampling of an 
analog signal and its reconstruction from a sequence 
of its discrete values. 

As we know very well, there is a theory (Marks II 
R. J. 1991), (Vetterli M., Kovacevic J., Goyal V. K. 
2014), (Oppenheim A. V., Schafer R. W., Buck J. R. 
1998), (Bracewell R. N. 2000), (McClellan J. H., Schafer 
R., Yoder M. 2015), (Brigola R. 2013), (So H. C. 2019), 
(Wang R. 2010), (Ingle V. K., Proakis J. G. 2012), 
(Jenkins W. K. 2009) (to mention only a few of 
excellent textbooks on fundamentals of digital signal 
processing), which overcomes the problem sketched 
above. But, this theory applies non-physical objects 
called Dirac distributions (named also Dirac 
generalized functions or Dirac deltas) (Schwartz L. 
1950-1951), (Dirac P. A. M. 1947). 

With application of this theory, (1) results in a 
solution, which is a sum of Dirac deltas multiplied by 
real numbers – these numbers are the corresponding 
coefficients of the Fourier expansion of ( )px t . So, as 
a consequence, the image of the discrete spectrum of a 
periodic signal – as it is visualized in Fig. 1 – must be 
then modified accordingly. Then, in case of our 
example signal, it has the form presented in Fig. 2 and 
is denoted by ( ),p DX f . 

 

Figure 2. Visualization of the discrete spectrum of an 
example periodic signal after a model that results in Dirac 
deltas in (1). 

The arrows in Fig. 2 represent the frequency-
shifted Dirac deltas ( )0f kf −  multiplied by the 
corresponding coefficients ( )c k  of the Fourier 
series of the signal ( )px t . So, the spectra presented 
in Fig. 1 and in Fig. 2 are not identical; they are two 
different images of the signal ( )px t  in the 
frequency domain. But, this is allowed in the theory 
that is currently in force. 

Note however that the above philosophy allowing 
a signal to have two (or more) different spectra can be 
a source of confusions and misinterpretations. One 
notable example of this kind is a strong belief of 
researchers and engineers that there occur aliasing 
and folding effects in spectra of sampled signals 
(sampled in an ideal way) (Marks II R. J. 1991), 
(Vetterli M., Kovacevic J., Goyal V. K. 2014), 
(Oppenheim A. V., Schafer R. W., Buck J. R. 1998), 
(Bracewell R. N. 2000), (McClellan J. H., Schafer R., 
Yoder M. 2015), (Brigola R. 2013), (So H. C. 2019), 
(Wang R. 2010), (Ingle V. K., Proakis J. G. 2012), 
(Jenkins W. K. 2009). Note that their mistake in this 
case lies in the fact that they draw their conclusions 
from the analysis of the second image of the spectrum 
of a sampled signal, which is derived from a model 
involving Dirac deltas. 

An alternative view on this problem is presented 
in (Borys A. 2020a). It is based on consideration of the 
first possible representation of the sampled signal 
spectrum (i.e. without involvement of Dirac deltas) 
and leads to quite different conclusions. 

The objective of this paper is to show, from 
another perspective, that really the spectrum of a 
sampled signal (sampled in an ideal way) cannot be 
uniquely defined. And, as it does not exist (Borys A. 
2020a), (Borys A. 2020b) as a Fourier transform of a 
true sampled signal, an extension of its definition is 
needed, what can be done in a variety of ways – as 
proposed, for example, in (Borys A. 2020b). So, this 
takes place in an arbitrary way.  

To strengthen this point of view, that is 
arbitrariness of the choice mentioned above, we 
consider here an example of solving a problem, in 
which two definitions of the spectrum of a sampled 
(ideally) signal are tacitly used, but not named 
explicitly at all. (Note that if these different definitions 
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of the same object were used this would be viewed as 
a mistake.)  

Our example is the Shannon’s proof of the 
reconstruction formula (Shannon C. E. 1949) applied, 
here, for obtaining a description of the signal 
sampling and sampled signal spectrum. It is 
presented and analyzed in the next section. The paper 
ends with a concluding remark. 

2 SHANNON’S PROOF OF RECONSTRUCTION 
FORMULA APPLIED TO DESCRIPTION OF 
SIGNAL SAMPLING AND SAMPLED SIGNAL 
SPECTRUM 

In this section, we consider a case when a signal 
( )y t  of a continuous time t  is a bandlimited one. 

And, we denote the maximal frequency present in its 
spectrum by mf . So, this signal can be sampled and 
reconstructed perfectly if the sampling period T fulfils 
the following Nyquist-Shannon condition: 

1 2s mT f f=  , (2) 

where sf  means the corresponding sampling 
frequency. (Note that from now the symbol T will 
play here two roles: of a signal repetition time and of 
a signal sampling period – the one applicable at the 
moment will follow from the context; moreover, the 
sampling frequency 

sf  corresponds with the 
frequency 0f  that was defined and used in the 
previous section.) 

It follows from the above that the Fourier 
transform ( )Y f  of the signal ( )y t  has nonzero 
values only on the segment ,m mf f −   of the 
frequency axis (that is supported only on this 
segment). This property allows to expand it on the 
whole frequency axis – in form of a Fourier series. 

Obviously, one can take into account a wider range 
of frequencies around ( )Y f  than ,m mf f −  , 
and treat it as “an extended support” of ( )Y f . And, 
just this is done in what follows – it makes a slight 
modification of the Shannon’s scheme in (Shannon C. 
E. 1949). We build up a periodic function ( )pY f  
from ( )Y f  on the following “extended supporting 
interval”: 2, 2s sf f −   with sf  given by (2). 
In other words, we perform here a periodization of 
( )Y f  on its “extended support” to get a periodic 

function on the whole frequency axis. 

Assume now that the function ( )pY f  so 
obtained fulfills the conditions (Bracewell R. N. 2000), 
(Brigola R. 2013) allowing its expansion in a Fourier 
series. That is we get then 
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where the coefficients ( )ka a k=  are given by 
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In the next step, observe that (4) can be re-written 
as 
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The final result in (5) follows from the fact that the 
first and third integrals there are equal to zero, 

( ) ( )pY f Y f  in the interval ,m mf f −  , and 
( )Y f  is identically zero outside the latter frequency 

range. 

Further, note that the result achieved in (5) can be 
also expressed in the following way:  
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and that this is a form of the inverse Fourier transform 
of ( )Y f calculated at the time point kT− . So, it 
allows us to write 

( )ka T y kT=  − . (7) 

And substituting (7) into (3) gives 

( ) ( ) ( )exp 2p

k

Y f T y kT j kTf


=−

= − .  (8) 

Note now that (8) can be rewritten in form of the 
so-called discrete time Fourier transform (DTFT) 
(McClellan J. H., Schafer R., Yoder M. 2015), (Vetterli 
M., Kovacevic J., Goyal V. K. 2014), (Wang R. 2010), 
(Ingle V. K., Proakis J. G. 2012), (Oppenheim A. V., 
Willsky S., Nawab S. H. 1996) of the discrete signal 
( )y kT  – which is obtained by sampling the signal 
( )y t  with the rate 1sf T=  and which shows 

only the samples of ( )y t  (that is without “any 
interest in what happens in the intervals between the 
successive moments of sampling”). To see this, let us 
introduce an auxiliary index k k = −  in (8). This 
results in 
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Omitting afterwards the prime symbol at k  in 
(9), we obtain 

( ) ( ) ( )exp 2p

k

Y f y kT j kTf


=−

= −  (10) 

with ( ) ( )y kT y kT T=  . So, finally, we see that the 
right-hand side of (10) constitutes really a definition of 
the DTFT of the signal ( )y kT , see (McClellan J. H., 
Schafer R., Yoder M. 2015), (Vetterli M., Kovacevic J., 
Goyal V. K. 2014), (Wang R. 2010), (Ingle V. K., 
Proakis J. G. 2012), (Oppenheim A. V., Willsky S., 
Nawab S. H. 1996). 

On the other hand, we know from the literature 
(Marks II R. J. 1991), (Vetterli M., Kovacevic J., Goyal 
V. K. 2014), (Oppenheim A. V., Schafer R. W., Buck J. 
R. 1998), (Bracewell R. N. 2000), (McClellan J. H., 
Schafer R., Yoder M. 2015), (Brigola R. 2013), (So H. C. 
2019), (Wang R. 2010), (Ingle V. K., Proakis J. G. 2012), 
(Jenkins W. K. 2009) that ( )pY f  is also identified, at 
the same time, with the spectrum (i.e. called the 
spectrum) of the sampled signal, say ( ),D Ty t , 
modelled as a generalized function of a continuous 
time t and consisting of the discrete signal ( )y kT  
mentioned just before with zeros filling the intervals 
between the successive points of sampling. So, let us 
express this fact as 

( )( ) ( ) ( )( ), ,S DTFT  PECT1 D T py t Y f y kT= =   (11) 

where ( )( ),SPECT1 D Ty t  denotes one of the 
possible definitions of the spectrum of the sampled 
signal ( ),D Ty t  that uses the notion of DTFT in the 
sense as explained above.  

As well known, the identity between 
( )( ),SPECT1 D Ty t  and ( )pY f  is also manifested in 

the literature (Marks II R. J. 1991), (Vetterli M., 
Kovacevic J., Goyal V. K. 2014), (Oppenheim A. V., 
Schafer R. W., Buck J. R. 1998), (Bracewell R. N. 2000), 
(McClellan J. H., Schafer R., Yoder M. 2015), (Brigola 
R. 2013), (So H. C. 2019), (Wang R. 2010), (Ingle V. K., 
Proakis J. G. 2012), (Jenkins W. K. 2009) in another 
way, namely by writing the following: 
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Observe now that the derivations and 
relationships presented above suggest that, probably, 
the expression on the right-hand side of (10) has been 
named the DTFT because it incorporates samples of 
an analog signal, a sum replacing an integral, and 
exponential functions of the type: ( )exp 2j kTf−  – 
all of them connected with each other into a whole 
resembling an usual Fourier transform. And, as 
shown in (10), when we go from the right to the left 
there, this DTFT equals the auxiliary periodic function 

( )pY f  calculated in the Shannon’s proof. But, the 
Shannon’s proof does not need to define the spectrum 
of the sampled signal ( ),D Ty t . 

Let us examine however correctness of the 
definition of the spectrum ( )( ),SPECT1 D Ty t  

assumed in (11). To this end, assume for a moment 
that there exists an inverse operator, say 1SPECT1− , 
which enables to obtain the sampled signal ( ),D Ty t  
from its spectrum ( )( ),SPECT1 D Ty t . Formula (12) 
tells us how it could look like, namely as 
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where ( )1−   stands for the usual inverse Fourier 
transform. Further, it is easy to obtain, from (13), the 
following: 

( ) ( ) ( )( ),
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However, note now that it has been shown in 
(Borys A. 2020c) that the operations performed in (13) 
cannot be considered as being fully correct within the 
classic mathematics (i.e. the one which does not 
include such objects like distributions, in particular 
Dirac distributions (Dirac P. A. M. 1947)). The reason 
of this, detailed explanations, and a remedy to 
circumvent the problem have been provided in (Borys 
A. 2020c). This material will not be, however, repeated 
here because of a lack of space as well as to avoid 
accusation of auto-plagiarism. Moreover, the 
reference (Borys A. 2020c) is well available. 

In what follows below, we use the main result 
from (Borys A. 2020c); it says that the definition of the 
DTFT occurring on the right-hand side of (10) must be 
modified to  
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where ( )DTFTm   stands for the modified DTFT 
after the theory presented in (Borys A. 2020c). 
Therefore, the middle expression in (12), expressing 
the DTFT in an equivalent way, must be modified, 
too. Then, it has the following form:  

( )( ) ( )DTFTm y kT Y f=  . (16) 

For details of derivation of (16), see (Borys A. 
2020c). 

Along the same lines as before, let us now identify 
it with the spectrum of a sampled signal. That is, let 
us write an equivalent of (11) for this case. We get 
then 

( )( ) ( ) ( )( ), ,S DTFTm  PECT2 E Ty t Y f y kT= =   (17) 

where ( )( ),SPECT2 K Ty t  stands for another 
possible definition of the spectrum (which exploits the 
notion of the DTFTm), and the sampled signal is 
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denoted now by ( ),E Ty t . Further, application of the 
inverse Fourier transform in (17) gives 

( ) ( ) ( )( )1

,E Ty t y t Y f−= = . (18) 

Now, let us “demonstrate the occurrence of 
samples ” in these two signals ( ),D Ty t  and 

( ),E Ty t  that model the sampled signal in the 
continuous time domain. To this end, see that the sum 
of exponentials in (14) can be expressed as the so-
called Dirac comb multiplied by T (Bracewell R. N. 
2000), (Osgood B. 2014). So, this gives 
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where the symbol ( )combT t  stands for the Dirac 
comb (Bracewell R. N. 2000), (Osgood B. 2014). 
Further, for ( ),E Ty t , we need to use the 
reconstruction formula (Marks II R. J. 1991), (Vetterli 
M., Kovacevic J., Goyal V. K. 2014), (Oppenheim A. 
V., Schafer R. W., Buck J. R. 1998), (Bracewell R. N. 
2000), (McClellan J. H., Schafer R., Yoder M. 2015), 
(Brigola R. 2013), (So H. C. 2019), (Wang R. 2010), 
(Ingle V. K., Proakis J. G. 2012), (Jenkins W. K. 2009). 
Applying it in (18), we arrive at 

( ) ( ) ( ),  sincE T

k

y t y kT t T k

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= −  , (20) 

with the function ( )sinc x  defined as 
( ) ( )sinc sinx x x =  for  0x   and 1 for 

 0x = . 

Observe now that both the signals ( ),D Ty t  and 
( ),E Ty t  differ from a true image of the sampled 

signal considered in the continuous time domain 
(Borys A. 2020b). (This image is called in (Borys A. 
2020b) a reference representation of the sampled 
signal and is denoted by ( ),R Tx t  there.) So, for 
getting ( ),R Tx t  from ( ),D Ty t  or ( ),E Ty t , an 
additional operation is needed (see for more details 
(Borys A. 2020b)). In other words, our conclusion at 
this point is that the true sampled signal ( ),R Tx t  
cannot be obtained neither by an inverse operation of 
the spectrum ( )SPECT1   nor by an inverse 
operation of the spectrum ( )SPECT2  . 

Let us now come back to the Shannon’s proof 
(Shannon C. E. 1949), to its second part (which can be 
loosely understood as obtaining the continuous time 
domain version of a signal from its discrete (digital) 
form). In short, it can be expressed in the following 
way: 
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 (21)  

3 CONCLUDING REMARK 

As a concluding remark, let us observe in (21) that 
both the spectra of the two possible definitions of the 
sampled signal occur implicitly in the Shannon’s 
proof of the reconstruction formula, but they are 
absolutely superfluous there. So, this underlines their 
arbitrariness, artificialness, and rather a limited 
usefulness – as we tried to show in this paper. 
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