PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The heat transfer and flow structure analyses of low concentration copper nanofluids in a strong magnetic field

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Main aim of this paper was to analyze the influence of strong magnetic field on the enhancement or suppression of nanofluids transport processes. The second objective was to determine how the flow structure changed under the influence of a magnetic field. Analyzed diamagnetic nanofluids composed of distilled water and the copper nanoparticles of 40–60 nm size in three different concentrations (50, 500, and 1000 ppm). The experimental enclosure position in the magnet test section caused the most intricate interaction of the acting forces: the gravitational and magnetic buoyancy ones, and made the interpretation of results very difficult. The Nusselt number ratio and the thermomagnetic Rayleigh number were determined for heat transfer analysis, while the fast Fourier transform was performed for the nanofluid flow structure analysis. Spectral analysis for all examined nanofluids was presented. Influence of nanoparticles concentration was clearly visible, while the direct impact of magnetic field on the heat transfer and flow structure should be still investigated.
Rocznik
Tom
Strony
29--42
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • AGH University of Science and Technology, Department of Fundamental Research in Energy Engineering, Mickiewicza 30, 30-059 Cracow, Poland
  • AGH University of Science and Technology, Department of Fundamental Research in Energy Engineering, Mickiewicza 30, 30-059 Cracow, Poland
Bibliografia
  • [1] Yu W., Xie H.: A review on nanofluids: Preparation, stability mechanisms, and applications. J. Nanomater. 2012(2012), 1–17.
  • [2] Khanafer K., Vafai K., Lightstone M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46(2003), 3639–3653.
  • [3] Abu-Nada E., Masoud Z., Oztop H.F., Campo A.: Effect of nanofluid variable properties on natural convection in enclosures. Int. J. Therm. Sci. 49(2010), 479–491.
  • [4] Qi C., He Y., Yan S., Tian F., Hu Y.: Numerical simulation of natural convection in a square enclosure filled with nanofluid using the two- phase Lattice Boltzmann method. Nanoscale Res. Lett. 8(2013), 56.
  • [5] Yang Y., Zhang Z.G., Grulke E.A., Anderson W.B., Wu G.: Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int. J. Heat Mass Transf. 48(2005), 1107–1116.
  • [6] Li D., Xie W., Fang W.: Preparation and properties of copper-oil-based nanofluids. Nanoscale Res. Lett. 6(2011), 373.
  • [7] Godson L., Raja B., Mohan Lal D., Wongwises S.: Enhancement of heat transfer using nanofluids – An overview. Renew. Sustain. Energy Rev. 14(2010), 629–641.
  • [8] Ternik P., Rudolf R., Zunic Z.: Numerical study of heat-transfer en hancement of homogeneous water-Au nanofluid under natural convection. Mater. Technol. 46(2012), 257–261.
  • [9] Barber J., Brutin D., Tadrist L.: A review on boiling heat transfer enhancement with nanofluids. Nanoscale Res. Lett. 6(2011), 280.
  • [10] Sheikholeslami M., Gorji Bandpy M., Ellahi R., Hassan M., Soleimani S.: Effects of MHD on Cu-water nanofluid flow and heat transfer by means of CVFEM. J. Magn. Magn. Mater. 349(2014), 188–200.
  • [11] Gupta U., Ahuja J., Wanchoo R.K.: Magneto convection in a nanofluid layer. Int. J. Heat Mass Transf. 64(2013), 1163–1171.
  • [12] Ghasemi B., Aminossadati S.M., Raisi A.: Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int. J. Therm. Sci. 50(2011), 1748–1756.
  • [13] Roszko A., Fornalik-Wajs E., Donizak J., Wajs J., Kraszewska A., Pleskacz L.: Magneto-thermal convection of low concentration nanofluids. MATEC Web Conf. 6(2014), 1–8.
  • [14] WrobelW., Fornalik-Wajs E., Szmyd J.S.: Experimental and numerical analysis of thermo-magnetic convection in a vertical annular enclosure. Int. J. Heat Fluid Flow. 31(2010), 1019–1031.
  • [15] Kenjeres S., Pyrda L., Wrobel W., Fornalik-Wajs E., Szmyd J.: Oscillatory states in thermal convection of a paramagnetic fluid in a cubical enclosure subjected to a magnetic field gradient. Phys. Rev. E. 85(2012), 1–8.
  • [16] Mukherjee S., Paria S.: Preparation and stability of nanofluids. A review. IOSR-JMCE 9(2013), 63–69.
  • [17] Xuan Y., Roetzel W.: Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transf. 43(2000), 3701–3707.
  • [18] Qi J., Wakayama N.I., Yabe A.: Magnetic control of thermal convection in electrically non-conducting or low-conducting paramagnetic fluids.Int. J. Heat Mass Transf. 44(2001), 3043–3052.
  • [19] Sreenivasan K.R.: The passive scalar spectrum and the Obukhov-Corrsin constant. Phys. Fluids. 8(1996), 189–196.
  • [20] Elsner J.W.: Turbulence of Flows. PWN, Warszawa 1989(in Polish)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf262362-5024-4595-a2f1-84e5e429d5fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.