Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper is devoted to investigation of spectral parameters of constricted arc plasma, as a foundation for further development of basic approaches to intellectual controlling of plasma-arc technologies of material treatment and welding. The relevance of application of spectrometric analysis of the welding arc consists in obtaining the possibility of sufficiently accurate control of its temperature and energy input into the product being welded, recording initiation of weld defects (including internal pores), determination of atmospheric oxygen ingress into the weld pool, etc. The spectral composition, temperature and concentration of the constricted welding arc plasma were determined in the paper to more precisely define its physical characteristics at 80 and 100 A currents, in order to establish the further applicability of dynamic spectral analysis of a constricted plasma arc in control of welding processes. As modern spectrometers with CCD-detectors of the spectral range of 200÷1100 nm have the resolution of the order of 0.35 nm, which 2-3 times exceeds the quantization step by the measured wavelength, and may lead to considerable errors, an approach is proposed to increase the accuracy of spectrometric measurements to acceptable values. Radiation spectra of the constricted welding arc measured in the wavelength range of 650÷1000 nm allowed within the model of local thermodynamic equilibrium calculating the excitation temperature of the main spectral range components: Ar I and O I. It was established that the excitation temperature of electron levels of Ar atoms in the welding arc plasma only weakly depends on the discharge current, and it is equal to 13500 ± 500 K. Excitation temperature of O I electron levels was equal to 10000 ± 500 К at arc current of 100 A and to 7200 ± 500 К at 80 A current. Electron density of high-current welding arc plasma was measured by Stark broadening of Ar I lines (696.543; 772.4; 912.3 nm). It was found that with the rise of current of the constricted welding arc by 20%, an increase of charge concentration in the arc plasma by 1.5 times and of its temperature by 1.2 times are observed.
Wydawca
Rocznik
Tom
Strony
250--263
Opis fizyczny
Bibliogr. 46 poz., fig., tab.
Twórcy
autor
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., Kyiv, 01601, Ukraine
autor
- China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangzhou, 363 Changxing Road, Tianhe, 510650, China
- E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 11 Kazymyr Malevych Str., Kyiv, 03150, Ukraine
autor
- China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangzhou, 363 Changxing Road, Tianhe, 510650, China
autor
- China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangzhou, 363 Changxing Road, Tianhe, 510650, China
- E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 11 Kazymyr Malevych Str., Kyiv, 03150, Ukraine
autor
- E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 11 Kazymyr Malevych Str., Kyiv, 03150, Ukraine
autor
- E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 11 Kazymyr Malevych Str., Kyiv, 03150, Ukraine
autor
- China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangzhou, 363 Changxing Road, Tianhe, 510650, China
autor
- E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 11 Kazymyr Malevych Str., Kyiv, 03150, Ukraine
autor
- E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 11 Kazymyr Malevych Str., Kyiv, 03150, Ukraine
autor
- E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 11 Kazymyr Malevych Str., Kyiv, 03150, Ukraine
Bibliografia
- 1. Mirapeix J., Cobo A., Fuentes J., Davila M., Etayo J.M., Lopez-Higuera J.-M. Use of the plasma spectrum RMS signal for arc-welding diagnostics. Sensors, 2009, 9, 5263–5276. [https://doi.org/10.3390/s90705263].
- 2. Gu, Y., Xu, Y., Shi, Y., Feng, C., Volodymyr, K. Corrosion resistance of 316 stainless steel in a simulated pressurized water reactor improved by laser cladding with chromium. Surface and Coatings Technology, 2022, 441, 128534 (https://doi.org/10.1016/j.surfcoat.2022.128534).
- 3. Prilutskyi V.P., Petrichenko I.K. Influence of oxygen concentration in argon of the protective nozzle on the properties and colour of weld surface in TIG welding of titanium // The Paton Welding Journal, 2021, 7, 7–12. [https://doi.org/10.37434/tpwj2021.07.02].
- 4. Zhanga W., Xua Y., Shia Y., Sua G., Gua Y., Volodymyr K. Intergranular corrosion characteristics of high-efficiency wire laser additive manufactured Inconel 625 alloys. Corrosion Science, 2022, 205, 110422. [https://doi.org/10.1016/j.corsci.2022.110422].
- 5. Gu Y., Xu Y., Shi Y., Feng C., Volodymyr K. Corrosion resistance of 316 stainless steel in a simulated pressurized water reactor improved by laser cladding with chromium. Surface and Coatings Technology, 2022, 441, 128534. [https://doi.org/10.1016/j.surfcoat.2022.128534].
- 6. Korzhyk V., Khaskin V., Grynyuk A., Ganushchak O., Peleshenko S., Konoreva O., Demianov O., Shcheretskiy V., Fialko N. Comparing features in metallurgical interaction when applying different techniques of arc and plasma surfacing of steel wire on titanium. Eastern-European Journal of Enterprise Technologies, 2021, 4, 12(112), 6–17. [https://doi.org/10.15587/1729-4061.2021.238634].
- 7. Babinets A.A., Ryabtsev I.O., Lentyugov I.P., Ryabtsev I.I., Kaida T.V., Bogaichuk I.L. Influence of amplitude and frequency of oscillations of electrode wire in arc surfacing on formation and structure of the deposited metal and penetration of base metal. The Paton Welding Journal, 2020, 10, 23–30. [https://doi.org/10.37434/tpwj2020.10.05].
- 8. Grigorenko G.M., Adeeva L.I., Tunik A.Y., Korzhik V.N., Doroshenko L.K., Titkov Y.P., Chaika A.A Structurization of coatings in the plasma arc spraying process using B4C + (Cr, Fe)7C3-cored wires. Powder Metallurgy and Metal Ceramics, 2019, 58(5–6), 312–322. [http://dx.doi.org/10.1007/s11106-019-00080-1].
- 9. Chen Y., Liang X., Wei S., Chen X., Xu B. Numerical simulation of the twin-wire arc spraying process: Modeling the high velocity gas flow field distribution and droplets transport. J. Therm. Spray Tech., 2012, 21, 263–274. [https://doi.org/10.1007/s11666-011-9723-0].
- 10. Deli J., Bo Y. An intelligent control strategy for plasma arc cutting technology. Journal of Manufacturing Processes, 2011, 13(1), 1–7. [https://doi.org/10.1016/j.jmapro.2010.08.003].
- 11. Fialko, N.M., Prokopov, V.G., Meranova, N.O., Korzhik, V.N., Sherenkovskaya, G.P. Thermal physics of gasothermal coatings formation processes. State of investigations. Fizika i Khimiya Obrabotki Materialov, 1993, (4), 83–93.
- 12. Vora H.D., Dahotre N.B. Laser surface heat treatment and modification. AM&P Technical Articles, 2013, 171(11): 45–47. [https://doi.org/10.31399/asm.amp.2013-11.p045].
- 13. Hryhorenko G.M., Adeeva L.I., Tunik A.Y., Karpets M.V., Korzhyk V.N., Kindrachuk M.V., Tisov O.V. Formation of microstructure of plasma-arc coatings obtained using powder wires with steel skin and B4C + (Cr, Fe)7C3 + Al filler. Metallofizika i Noveishie Tekhnologii, 2020, 42(9), 1265–1282. [https://doi.org/10.15407/mfint.42.09.1265].
- 14. Chabak Yu.G., Pastukhova T.V., Efremenko V.G., Zurnadzhy V.I., Fedun V.I., Tsvetkova E.V., Dzherenova A.V. Pulsed plasma surface modification of grey cast iron. Journal of Physical Studies, 2020, 24(2), 2501 [8 pages]. [https://doi.org/10.30970/jps.24.2501].
- 15. Klett J., Bongartz B., Wolf T., Hao C., Maier H. J., Hassel T. Plasma welding of aluminum in an oxygen-free argon atmosphere. Advances in Materials Science, 2023, 23, 1(75), 5–18. [https://doi.org/10.2478/adms-2023-0001].
- 16. Shanping L., Hidetoshi F., Kiyoshi N. Effects of CO2 shielding gas additions and welding speed on GTA weld shape. Journal of Materials Science, 2005, 40(9): 2481–2485. [https://doi.org/10.1007/s10853-005-1979-7].
- 17. Cullen P.J., Milosavljević V. Spectroscopic characterization of a radio-frequency argon plasma jet discharge in ambient air. Progress of Theoretical and Experimental Physics, 2015, 2015(6), 063J01. [https://doi.org/10.1093/ptep/ptv070].
- 18. Kvasnytskyi, V., Korzhyk, V., Kvasnytskyi, V., Matviienko, M., Buturlia, Y. Designing brazing filler metal for heat-resistant alloys based on ni al intermetallide. Eastern-European Journal of Enterprise Technologies, 2020, 6(12), 6–19. [http://dx.doi.org/10.15587/1729-4061.2020.217819].
- 19. Ata F., Calık A., Ucar N. Investigation on the microstructure and mechanical properties of ASTM A131 steel manufactured by different welding methods. Advances in Materials Science, 2022, 22, 4(74), 32–40. [https://doi.org/10.2478/adms-2022-0017].
- 20. Garcia-Allende P.B., Mirapeix J., Cobo A., Conde O.M. Arc welding quality monitoring by means of near infrared imaging spectroscopy. Proceedings of SPIE – The International Society for Optical Engineering, 2008, 6939. [https://doi.org/10.1117/12.770246].
- 21. Zhang Y.M., Yang Y.P., Zhang W., Na S.-J. Advanced welding manufacturing – An analysis and review of challenges and solutions. Journal of Manufacturing Science and Engineering, 2020, 142(11), 1–77. [https://doi.org/10.1115/1.4047947].
- 22. Mirapeix J., Cobo A., Jauregui C., López-Higuera J.M. Fast algorithm for spectral processing with application to on-line welding quality assurance. Measurement Science and Technology, 2006, 17(10), 2623. [https://doi.org/10.1088/0957-0233/17/10/013].
- 23. Lonkwic P., Tofil A. Supporting welding work in the aspect of increasing production process efficiency. Advances in Science and Technology Research Journal, 2023, 17(1), 8–14. [https://doi.org/10.12913/22998624/157418].
- 24. Bebiano D., Alfaro S.C.A. A weld defects detection system based on a spectrometer. Sensors, 2009, 9(4), 2851–61. [https://doi.org/10.3390/s90402851].
- 25. Murphy A.B. The effects of metal vapour in arc welding. Journal of Physics D: Applied Physics, 2010, 43(43), 434001. [https://doi.org/10.1088/0022-3727/43/43/434001].
- 26. Weglowski M. Investigation on the electric arc light emission in TIG welding. International Journal of Computational Materials Science and Surface Engineering, 2007, 1(6). [https://doi.org/10.1504/IJCMSSE.2007.017927].
- 27. Uhrlandt D., Kozakov R., Gött G., Wendt M., Schopp H. Temperature profiles of welding arcs and its interpretation. IEEE International Conference on Plasma Science, 2012. [https://doi.org/10.1109/PLASMA.2012.6383562].
- 28. Nagi Ł., Kozioł M., Zygarlicki J. Comparative analysis of optical radiation emitted by electric arc generated at AC and DC voltage. Energies, 2020, 13(19), 5137. [https://doi.org/10.3390/en13195137].
- 29. Zhang Y., Wang Q., Liu Y. Adaptive intelligent welding manufacturing. Welding Journal, 2021, 100(1), 63–83. [https://doi.org/10.29391/2021.100.006].
- 30. Utsumi A., Matsuda J., Yoneda M., Katsumura M. Effect of base metal travelling direction on TIG arc behaviour. Study of high‐speed surface treatment by combined use of laser and arc welding (Report 4). Welding International, 2002, 16(7), 530–536. [https://doi.org/10.1080/09507110209549571].
- 31. Gauglitz G., Moore D.S. Handbook of spectroscopy: second, enlarged edition. – Wiley‐VCH Verlag GmbH & Co. KGaA, 2014, 1878. [https://doi.org/10.1002/9783527654703]
- 32. NIST Standard Reference Database 78. Version 5.11. December 2023, Version History & Citation Information. [https://dx.doi.org/10.18434/T4W30F].
- 33. Plasma Diagnostic Techniques. Edited by R. H. Huddlestone and S.L. Leonard. Academic Press, 1965, 627. Published online by Cambridge University Press: 13 March 2009. [https://dx.doi.org/10.1017/S0022377800003160].
- 34. Xiong Q., Nikiforov A., Britun N., Snyders R., Leys C., Lu X. A simple profile-fitting method to determine the metastable and resonant densities in a cold atmospheric pressure argon plasma jet. Journal of Applied Physics, 2011, 110(7), 073302–073302-10. [https://dx.doi.org/10.1063/1.3643004].
- 35. Unsöld A., Baschek B. Spektren und Atmosphären der Sterne. In: Der neue Kosmos. Springer Spektrum, Berlin, Heidelberg, 2002, 200-279. [https://doi.org/10.1007/978-3-662-06529-7_7].
- 36. Nikiforov A. Yu., Leys C., Gonzalez M.A., Walsh J.L. Electron density measurement in atmospheric pressure plasma jets: Stark broadening of hydrogenated and non-hydrogenated lines. Plasma Sources Sci. Technol., 2015, 24, 034001. [https://dx.doi.org/10.1088/0963-0252/24/3/034001].
- 37. Gigosos M., González-Herrero D. Stark broadening calculations for plasma diagnostics. Conference: Frontiers in Low Temperature Plasma DiagnostisAt: Kerkrade (Netherlands) Ordinal: 10th, 2013. [https://dx.doi.org/10.13140/RG.2.2.29380.22406].
- 38. Park S., Choe W., Moon S.Y., Yoo S.J. Electron characterization in weakly ionized collisional plasmas: from principles to techniques. Advances in Physics: X, 2019, 4(1), 1526114. [https://doi.org/10.1080/23746149.2018.1526114].
- 39. Schuller F., Behmenburg W. Perturbation of spectral lines by atomic interactions. Physics Reports, 1974, 12(4), 273–334. [https://doi.org/10.1016/0370-1573(74)90018-0].
- 40. Foley H.M. The pressure broadening of spectral lines. Phys. Rev., 1946, 69, 616. [https://doi.org/10.1103/PhysRev.69.616].
- 41. Korzhyk V.M., Grynyuk A.A., Khaskin V.Yu., Voitenko O.M., Burlachenko O.M., Khuan O.O. Plasma-arc technologies of additive surfacing (3D printing) of spatial metal products: application experience and new opportunities. The Paton Welding Journal, 2023, 11, 3–20. [https://doi.org/10.37434/tpwj2023.11.01].
- 42. Muñoz J., Dimitrijević M.S., Yubero C., Calzada M.D. Using the van der Waals broadening of spectral atomic lines to measure the gas temperature of an argon–helium microwave plasma at atmospheric pressure. Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64(2), 167–172. [https://doi.org/10.1016/j.sab.2008.11.006].
- 43. Fialko N.M., Stepanova, A.I., Navrodska R.O., Gnedash G.O., Shevchuk S.I. Complex methods for analysis of efficiency and optimization of heat-recovery systems. Science and Innivation, 2021, 17(4), 11–18. [https://doi.org/10.15407/scine17.04.011].
- 44. Ochkin V.N. Spectroscopy of low temperature plasma. – Wiley‐VCH Verlag GmbH & Co. KGaA, 2009. – 609. [https://doi.org/10.1002/9783527627509]
- 45. Lim J.S., Hong Y.J., Ghimire B., Choi J., Mumtaz S., Choi E.H. Measurement of electron density in transient spark discharge by simple interferometry. Results in Physics, 2021, 20, 103693. [https://doi.org/10.1016/j.rinp.2020.103693].
- 46. Ling S.H. A new neural network structure: node-to-node-link neural network. Journal of Intelligent Learning Systems and Applications, 2010, 2(1). [https://doi.org/10.4236/jilsa.2010.21001].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf256bf4-0f92-49b0-a8f4-813d69432ba9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.