PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biologiczne oczyszczanie wód podziemnych z chlorowcopochodnych etenu

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Biological treatment of groundwaters polluted with chlorinated ethene
Języki publikacji
PL
Abstrakty
PL
Trichloroeten (TCE) i tetrachloroeten (PCE) należą do grupy lotnych związków chloroorganicznych. Wysoka toksyczność, właściwości kancerogenne i mutagenne, a także bioakumulacja tych związków spowodowały wzrost zainteresowania metodami ich usuwania ze środowiska wodnego, w tym metodami biologicznymi. TCE i PCE należą do związków opornych na biodegradację. Ich rozkład w warunkach tlenowych zachodzi przeważnie na drodze kometabolizmu w obecności specyficznych substratów wzrostowych. W warunkach beztlenowych trichloroeten i tetrachloroeten są wykorzystywane przez bakterie, jako końcowe akceptory elektronów, w procesie dehalorespiracji lub ulegają rozkładowi przy udziale bakterii metanogennych, acetogennych, redukujących Fe(III) i Mn(IV) oraz redukujących siarczany. Podjęto także próby biodegradacji trichloroetenu przy zastosowaniu grzybów białej zgnilizny drewna. Wyniki badań wskazują, że proces ten zachodzi w sposób zbliżony do przemian u ssaków i zasadniczo różni się od procesów biodegradacji prowadzonych przez bakterie. W pracy omówiono przebieg i skuteczność usuwania TCE i PCE ze środowiska wodnego metodami biologicznymi.
EN
Trichloroethene (TCE) and tetrachloroethene (PCE) belong to the group of volatile chloroorganic compounds. High toxicity, carcinogenicity and mutagenicity as well as bioaccumulation of these compounds has led to the increased interest in methods of their removal from water environment, including biological methods. TCE and PCE are compounds resistant to biodegradation. In aerobic conditions their biodegradation is most often cometabolic in the presence of specific growth substrates. In anaerobic conditions, trichloroethene and tetrachloroethene are used by bacteria as terminal electron acceptors in dehalorespiration or are degraded by methanogens, acetogenic bacteria and Fe(III)-, Mn(IV)- and sulfate-reducing bacteria. Attempts at bioremediation of TCE using white-rot fungi have also been made. The study results indicate that TCE degradation pathway is similar to that previously reported for mammals and essentially differs from bacterial degradation processes. Mechanism and efficacy of biological treatment of groundwaters polluted with chlorinated ethene have been reviewed.
Czasopismo
Rocznik
Strony
9--13
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
  • Politechnika Warszawska, Wydział Inżynierii Środowiska, ul. Nowowiejska 20, 00-653 Warszawa
Bibliografia
  • 1. V. VOLČÍK, J. HOFFMANN, J. RŮŽIČKA, M. SERGEJEVOVÁ: Trichloroethylene (TCE) removal in a single pulse suspension bioreactor. Journal of Environmental Management 2005, Vol. 74, pp. 293–304.
  • 2. P. PANT, S. PANT: A review: Advances in microbial remediation of trichloroethylene (TCE). Journal of Environmental Sciences 2010, Vol. 22, No. 1, pp. 116–126.
  • 3. T. SCHETTLER, G. SOLOMON, M. VALENTI, A. HUDDLE: Generations at Risk: Reproductive Health and the Environment. MIT Press, Cambridge 1999.
  • 4. K. KIRCHNER, D. HELF, P. OTT: The reaction of OH radicals with l,l-di-, tri-, and tetrachloroethylene. Berichte der Bunsengesellschaft für physikalische Chemie 1990, Vol. 94, pp. 77–83.
  • 5. Toxicological Review of Trichloroethylene (CASRN 79-01-6) in Support of Summary Information on the Integrated Risk Information System (IRIS). U.S. Environmental Protection Agency, Washington DC 2011.
  • 6. Toxicological Profile for Tetrachloroethylene. Agency for Toxic Substances and Disease Registry, 1997.
  • 7. M. ŁEBKOWSKA, E. ZBOROWSKA, A. TABERNACKA: Trichloroethylene and tetrachloroethylene biological removal from waste air in a hybrid reactor with activated carbon. Proc. of International Conference Environmental (Bio)Technologies, Gdańsk 2011.
  • 8. A. KIECAK, E. KRET, G. MALINA: Ocena opóźnienia migracji TCE w ośrodku porowatym na podstawie testów statystycznych. Przegląd Geologiczny 2013, vol. 61, ss. 62–66.
  • 9. S.D. BROWN, A.M. DIXON, J.V. BRUCKNER, M.G. BARTLETT: A validated GC-MS assay for the quantitation of trichloroethylene (TCE) from drinking water. International Journal of Environmental Analytical Chemistry 2003, Vol. 83, pp. 427–432.
  • 10. E. GUBIAK-WITWICKA, L. PASZEK: Wody podziemne. Wojewódzki Inspektorat Ochrony Środowiska, Katowice 2005 (praca niepublikowana).
  • 11. S. SITEK, A. KOWALCZYK: Występowanie trichloroetenu i tetrachloroetenu w wodach podziemnych w rejonie Tarnowskich Gór. Biuletyn Państwowego Instytutu Geologicznego 2011, vol. 445, ss. 633–642.
  • 12. J. DOJLIDO, E. ZBIEĆ: Mikrozanieczyszczenia organiczne w wodach warszawskich wodociągów (Organic micropollutants in the surface water received by the Waterworks of Warsaw). Ochrona Środowiska 1993, vol. 15, nr 3, ss. 29–31.
  • 13. J. DOJLIDO, E. ZBIEĆ: Zanieczyszczenia organiczne warszawskiej wody wodociągowej (Organic pollutants in the drinking water of Warsaw). Ochrona Środowiska 1995, vol. 17, nr 3, ss. 55–58.
  • 14. M.O. RIVETT, R.J. TURNER, P. GLIBBERY, M.O. CUTHBERT: The legacy of chlorinated solvents in the Birmingham aquifer, UK: Observations spanning three decades and the challenge of future urban groundwater development. Journal of Contaminant Hydrology 2012, Vol. 140–141, pp. 107–123.
  • 15. T. FUTAGAMI, M. GOTO, K. FURUKAWA: Biochemical and genetic bases of dehalorespiration. Chemical Record 2008, Vol. 8, pp. 1–12.
  • 16. A. GROSTERN, E. EDWARDS: Growth of Dehalobacter and Dehalococcoides spp. during degradation of chlorinated ethanes. Applied and Environmental Microbiology 2006, Vol. 72, pp. 428–436.
  • 17. O. SUTTINUN, E. LUEPROMCHAI, R. MÜLLER: Cometabolism of trichloroethylene: Concepts, limitations and available strategies for sustained biodegradation. Reviews in Environmental Science and Biotechnology 2013, Vol. 12, pp. 99–114.
  • 18. A.K. SHUKLA, S.N. UPADHYAY, S.K. DUBEY: Current trends in trichloroethylene biodegradation: A review. Critical Reviews in Biotechnology 2012, DOI:10.3109/07388551.2012.727080.
  • 19. M. HU, Y. ZHANG, Z. WANG, Z. JIANG, J. LI: Influence of humic acid on the trichloroethene degradation by Dehalococcoides-containing consortium. Journal of Hazardous Materials 2011, Vol. 190, pp. 1074–1078.
  • 20. T. MATTES, A. ALEXANDER, N. COLEMAN: Aerobic biodegradation of the chloroethenes: Pathways, enzymes, ecology and evolution. FEMS Microbiology Reviews 2010, Vol. 34, pp. 445–474.
  • 21. L.A. DECKARD, J.C. WILLIS, D.B. RIVERS: Evidence for the aerobic degradation of tetrachloroethylene by a bacterial isolate. Biotechnology Letters 1994, Vol. 16, No. 11, pp. 1221–1224.
  • 22. D. ARP, C. YEAGER, M. HYMAN: Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation 2001, Vol. 12, pp. 81–103.
  • 23. Y.-M. CHEN, T.-F. LIN, C. HUANG, J.-C. LIN, F.-M. HSIEH: Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida. Journal of Hazardous Materials 2007, Vol. 144, pp. 660–670.
  • 24. L. MEZA, T. CUTRIGHT, B. EL-ZAHAB, P. WANG: Aerobic biodegradation of trichloroethylene using a consortium of five bacterial strains. Biotechnology Letters 2003, Vol. 25, pp. 1925–1932.
  • 25. A. TABERNACKA, E. ZBOROWSKA: TCE and PCE elimination from the air by means of a hybrid reactor with immobilized biomass. Journal of Bioscience and Bioengineering 2012, Vol. 114, No. 3, pp. 318–324.
  • 26. H. SAEKI, M. AKIRA, K. FURUHASHI, B. AVERHOFF, G. GOTTSCHALK: Degradation of trichloroethene by a linear-plasmid-encoded alkene monooxygenase in Rhodococcus corallinus (Nocardia corallina) B-276. Microbiology 1999, Vol. 145, pp. 1721–1730.
  • 27. K. HORI, J. MII, Y. MORONO, Y. TANJI, H. UNNO: Kinetic analyses of trichloroethylene cometabolism by toluene-degrading bacteria harboring a tod homologous gene. Biochemical Engineering Journal 2005, Vol. 26, pp. 59–64.
  • 28. S.H. LIANG, J.K. LIU, K.H. LEE, Y.C. KUO, C.M. KAO: Use of specific gene analysis to assess the effectiveness of surfactant-enhanced trichloroethylene cometabolism. Journal of Hazardous Materials 2011, Vol. 198, pp. 323–330.
  • 29. A. HATAKKA: Lignin-modifying enzymes from selected white-rot fungi: Production and role from in lignin degradation. FEMS Microbiology Reviews 1994, Vol. 13, pp. 125–135.
  • 30. C.A. REDDY: The potential for white-rot fungi in the treatment of pollutants. Current Opinion in Biotechnology 1995, Vol. 6, pp. 320–328.
  • 31. E. MARCO-URREA, T. PARELLA, X. GABARRELL, G. CAMINAL, T. VICENT, C.A. REDDY: Mechanistics of trichloroethylene mineralization by the white-rot fungus Trametes versicolor. Chemosphere 2008, Vol. 70, pp. 404–410.
  • 32. E.M. SIPKEMA, W. de KONING, J.E.T. van HYLCKAMA VLIEG, K.J. GANZEVELD, D.B. JANSSEN, A.A.C.M. BEENACKERS: Trichloroethene degradation in a two-step system by Methylosinus trichosporium OB3b. Optimization of system performance: Use of formate and methane. Biotechnolology and Bioengineering 1999, Vol. 63, pp. 56–68.
  • 33. L.H. SMITH, P.L. MCCARTY: Laboratory evaluation of a two-stage treatment system for TCE cometabolism by a methane-oxidizing mixed culture. Biotechnology and Bioengineering 1997, Vol. 55, No. 4, pp. 650–659.
  • 34. J.E.T. van HYLCKAMA VLIEG, D.B. JANSSEN: Formation and detoxification of reactive intermediates in the metabolism of chlorinated ethenes. Journal of Biotechnology 2001, Vol. 85, pp. 81–102.
  • 35. C.-S. HWU, C.-J. LU: Continuous dechlorination of tetrachloroethene in an upflow anaerobic sludge blanket reactor. Biotechnology Letters 2008, Vol. 30, pp. 1589–1593.
  • 36. K.-D. WENDLANDT, U. STOTTMEISTER, J. HELM, B. SOLTMANN, M. JECHOREK, M. BECK: The potential of methane-oxidizing bacteria for applications in environmental biotechnology. Engineering in Life Science 2010, Vol. 10, No. 2, pp. 87–102.
  • 37. S.M. PFIFFNER, A.V. PALUMBO, G.O. SAYLES, D. GANNON: Microbial population and degradation activity changes monitored during a chlorinated solvent biovent demonstration. Ground Water Monitoring and Remediation 2004, Vol. 24, No. 3, pp. 102–110.
  • 38. K. PAWLUK: Konstrukcje inżynierskie wspomagające procesy oczyszczania środowiska gruntowo-wodnego. Przegląd Naukowy – Inżynieria i Kształtowanie Środowiska 2011, vol. 20, nr 3(53), ss. 258–271.
  • 39. C.M. KAO, S.C. CHEN, M.C. SU: Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation. Chemosphere 2001, Vol. 44, pp. 925–934.
  • 40. B.J. ORCHARD, W.J. DOUCETTE, J.K. CHARD, B. BUGBEE: Uptake of trichloroethylene by hybrid poplar trees grown hydroponically in flow-through plant growth chambers. Environmental Toxicology and Chemistry 2000, Vol. 19, No. 4, pp. 895–903.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf227ff9-4437-4086-9ba7-1608639ddd4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.