PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Koronawirusy : niewidzialne zagrożenie o globalnym zasięgu

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Coronaviruses : an invisible threat with a global reach
Języki publikacji
PL
Abstrakty
PL
Koronawirusy są przyczyną wielu chorób ludzi i zwierząt. Od momentu pierwszych obserwacji Beaudette’a i Hudsona w 1933 r., opisujących „zadyszkę kurczaków” jako śmiertelną chorobę układu oddechowego (Beaudette, Hudson 1933; 1937), aż po czasy współczesne zdominowane informacjami o światowej pandemii COVID-19, znaczenie tej grupy drobnoustrojów dla zdrowia i bezpieczeństwa zarówno populacji generalnej, jak i pracujących nabiera coraz większego znaczenia. Stosowane dziś nowoczesne metody analizy molekularnej oraz coraz bardziej precyzyjne rozpoznanie reakcji immunologicznych związanych z działaniem patogenów z tej grupy pozwala nie tylko na pełniejsze zrozumienie biologii koronawirusów, ale i na poznanie patogenezy wywoływanych przez nie chorób. W artykule opisano systematykę rodziny Coronaviridae, scharakteryzowano budowę wirionu i sposoby jego namnażania się, przedstawiono metodykę badań próbek klinicznych i środowiskowych na obecność w nich koronawirusów oraz opisano patogenność tej grupy drobnoustrojów wraz z krótką charakterystyką największych epidemii, których przyczyną były wirusy SARS i MERS. W artykule szczególną uwagę poświęcono wirusowi SARS-CoV-2, który jest odpowiedzialny za mającą obecnie miejsce światową pandemię, zapoznając czytelnika nie tylko ze skutkami zdrowotnymi zakażenia wywołanego przez ten koronawirus, ale i opisując działania stosowane w profilaktyce przeciwwirusowej, przedstawiając prace związane z opracowywaniem szczepionek przeciw temu koronawirusowi i charakteryzując zagrożenia wywołane jego obecnością w najbardziej narażonych sektorach gospodarki.
EN
Coronaviruses are causative agent of many human and animal diseases. Since the first observations made by Beaudette and Hudson in 1933, describing “gasping disease” of chickens as a deadly respiratory disease, to modern times dominated by information about the global COVID-19 pandemic, the importance of this group of pathogens for the health and safety of both the general and the working populations has been constantly growing. Nowadays, the modern methods of molecular analysis and precise recognition of immunological reactions related to the activity of pathogens from this group allow not only a more complete understanding of the biology of coronaviruses, but also the pathogenesis of the diseases caused by them. This article describes the taxonomy of Coronaviridae family, characterizes the structure of the virion and methods of its multiplication, presents the methodology of clinical and environmental samples testing used to confirm the presence of coronaviruses, and describes the pathogenicity of this group of microorganisms along with a brief description of the largest epidemics caused by SARS and MERS coronaviruses. A special emphasis in this paper is given to SARS-CoV-2 coronavirus, which is responsible for the currently observed global pandemic, familiarizing the potential readers with the health effects of infection caused by this virus, activities used in antiviral prophylaxis, works related to the development of vaccines and the risk caused by its presence in the most vulnerable sectors of the economy.
Rocznik
Strony
5--35
Opis fizyczny
Bibliogr. 160 poz., rys., tab.
Twórcy
  • Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy, Warszawa Central Institute for Labour Protection – National Research Institute, Warsaw, Poland
  • Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy, Warszawa Central Institute for Labour Protection – National Research Institute, Warsaw, Poland
  • Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy, Warszawa Central Institute for Labour Protection – National Research Institute, Warsaw, Poland
  • Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy, Warszawa Central Institute for Labour Protection – National Research Institute, Warsaw, Poland
  • Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy, Warszawa Central Institute for Labour Protection – National Research Institute, Warsaw, Poland
Bibliografia
  • 1. Abad F.X., Pintó R.M., Bosch A. (1994). Survival of enteric viruses on environmental fomites. Appl. Environ. Microbiol. 60, 3704–3710.
  • 2. Abdul-Rasool S., Fielding B.C. (2010). Understanding human coronavirus HCoV-NL63. Open Virol. J. 4, 76–84.
  • 3. Abramczuk E., Pancer K., Gut W., Litwińska B. (2017). Niepandemiczne koronawirusy człowieka – charakterystyka i diagnostyka. [Non-pandemic human coronaviruses – characteristic and diagnostics] Post. Mikrobiol. [Advancements of Microbiology] 56(2), 205–213.
  • 4. Alonso C., Raynor P.C., Davies P.R., Torremorell M. (2015). Concentration, size distribution, and infectivity of airborne particles carrying swine viruses. PLoS One 10(8), e0135675.
  • 5. Amer H.M. (2018). Bovine-like coronaviruses in domestic and wild ruminants. Anim. Health Res. Rev. 19, 113–124.
  • 6. Anderson B.D., Lednicky J.A., Torremorell M., Gray G.C. (2017). The use of bioaerosol sampling for airborne virus surveillance in swine production facilities: a mini review. Front. Vet. Sci. 4, 121.
  • 7. AOTMiT (2020). Agencja Oceny Technologii Medycznych i Taryfikacji. Przegląd strategii walki z COVID-19 w okresie jesienno-zimowym. 5.08.2020 [https://www.aotm.gov. pl/media/2020/08/1_1_aotmit_strategi_walki_z_covid19_v.1.0.pdf, data dostępu: 14.10.2020].
  • 8. AVMA (2020). American Veterinary Medical Association [https://www.avma.org/sites/default/files/2020-02/AVMADetailed-Coronoavirus-Taxonomy-2020-02-03.pdf, data dostępu: 5.10.2020].
  • 9. Beaudette F.R., Hudson C.B. (1933). Newly recognized poultry disease. North Am. Vet. 14, 50–54.
  • 10. Beaudette F.R., Hudson C.B. (1937). Cultivation of the virus of infectious bronchitis. J. Am. Vet. Med. Assoc. 90, 51–58.
  • 11. Bekking C., Yip L., Groulx N., Doggett N., Finn M., Mubareka S. (2019). Evaluation of bioaerosol samplers for the detection and quantification of influenza virus from artificial aerosols and influenza virus-infected ferrets. Influenza Other Respir. Viruses 13(6), 564–573.
  • 12. Boone S.A., Gerba C.P. (2007). Significance of fomites in the spread of respiratory and enteric viral diseases. Appl. Environ. Microbiol. 73(6), 1687–1696.
  • 13. Boone S.A., Gerba C.P. (2010). The prevalence of human parainfluenza virus 1 on indoor office fomites. Food Environ. Virol. 2(1), 41–46.
  • 14. Booth T.F., Kournikakis B., Bastien N., Ho J., Kobasa D., Stadnyk L., Li Y., Spence M., Paton S., Henry B., Mederski B., White D., Low D.E., McGeer A, Simor A., Vearncombe M., Downey J., Jamieson F.B., Tang P., Plummer F. (2005). Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units. J. Infect. Dis. 191, 1472–1477.
  • 15. Borsetto D., Hopkins C., Philips V., Obholzer R., Tirelli G., Polesel J., Boscolo-Rizzo P. (2020). Self-reported alteration of sense of smell or taste in patients with COVID-19: a systematic review and meta-analysis on 3563 patients. Rhinology.
  • 16. Bouaziz J.D., Duong T., Jachiet M., Velter C., Lestang P., Cassius C., Arsouze A., Domergue Than Trong E., Bagot M., Begon E., Sulimovic L., Rybojad M. (2020). Vascular skin symptoms in COVID-19: a french observational study. J. Eur. Acad. Dermatol. Venereol. 34, e252–254.
  • 17. Bredenbeek P.J., Pachuk C.J., Noten A.F., Charité J., Luytjes W., Weiss S.R., Spaan W.J. (1990). The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59; a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism. Nucleic Acids Res. 18, 1825–1832.
  • 18. Brendish N.J., Poole S., Naidu V.V., Mansbridge C.T., Norton N., Borca F., Phan H.T., Wheeler H., Harvey M., Presland L., Clark T.W. (2020). Clinical characteristics, symptoms and outcomes of 1054 adults presenting to hospital with suspected COVID-19: a comparison of patients with and without SARS-CoV-2 infection. J. Infect.
  • 19. Brian D.A., Baric R.S. (2005). Coronavirus genome structure and replication. Curr. Top. Microbiol. Immunol. 287, 1–30.
  • 20. Carvalho A., Alqusairi R., Adams A., Paul M., Kothari N., Peters S., DeBenedet A.T. (2020). SARS-CoV-2 gastrointestinal infection causing hemorrhagic colitis: implications for detection and transmission of COVID-19 disease. Am. J. Gastroenterol. 115, 942–946.
  • 21. Cavanagh D. (2007). Coronavirus avian infectious bronchitis virus. Vet. Res. 38(2), 281–297.
  • 22. CDC (2020a). Centers for Disease Control and Prevention. COVID-19 Global Response. 5.08.2020 [https://www. cdc.gov/coronavirus/2019-ncov/global-covid-19/globalresponse.html, data dostępu: 25.09.2020].
  • 23. CDC (2020b). Centers for Disease Control and Prevention. People with vertain medical conditions. 6.10.2020 [https:// www.cdc.gov/coronavirus/2019-ncov/need-extraprecautions/people-with-medical-conditions.html, data dostępu: 25.09.2020].
  • 24. Chan K.H., Sridhar S., Zhang R.R, Chu H., Fung A.Y.F., Chan G., Chan J.F.W., To K.K.W., Hung I.F.N., Cheng V.C.C, Yuen K.Y. (2020). Factors affecting stability and infectivity of SARS-CoV-2. J. Hosp. Infect. 106(2), 226–231.
  • 25. Chao C.Y.H., Wan M.P., Morawska L., Johnson G.R., Ristovski Z., Hargreaves M., Mengersen K.L., Corbett S., Li Y., Xie X., Katoshevski D. (2009). Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J. Aerosol Sci. 40(2), 122–133.
  • 26. Chen Y., Liu Q., Guo D. (2020). Emerging coronaviruses: genome structure, replication, and pathogenesis. J. Med. Virol. 92(4), 418–423.
  • 27. Chin A.W.H., Chu J.T.S., Perera M.R.A., Hui K.P.Y., Yen H.-L., Chan M.C.W., Peiris M., Poon L.L.M. (2020). Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 1(1), e10.
  • 28. Choi W.S., Rodríguez R.A., Sobsey M.D. (2014). Persistence of viral genomes after autoclaving. J. Virol. Methods 198, 37–40.
  • 29. Colaneri M., Sacchi P., Zuccaro V., Biscarini S., Sachs M., Roda S., Pieri T.C., Valsecchi P., Piralla A., Seminari E., Di Matteo A., Novati S., Maiocchi L., Pagnucco L., Tirani M., Baldanti F., Mojoli F., Perlini S., Bruno R., COVID19 IRCCS San Matteo Pavia Task Force (2020). Clinical characteristics of coronavirus disease (COVID-19) early findings from a teaching hospital in Pavia, North Italy, 21 to 28 February 2020. Euro Surveill. 25(16), 2000460.
  • 30. Coronavirus Resource Center (2020). Johns Hopkins University [https://coronavirus.jhu.edu/map.html, data dostępu: 10.10.2020].
  • 31. Dhama K., Khan S., Tiwari R., Sircar S., Bhat S., Malik Y.S., Singh K.P., Chaicumpa W., Bonilla-Aldana D.K., RodriguezMorales A.J. (2020). Coronavirus disease 2019 – COVID-19. Clin. Microbiol. Rev. 33, e00028-20.
  • 32. Dhinakar Raj G., Jones R.C. (1997). Infectious bronchitis virus: immunopathogenesis of infection in the chicken. Avian Pathol. 26(4), 677–706.
  • 33. Domańska-Blicharz K. (2018). Zakaźne zapalenie oskrzeli kur – ogólnoświatowy problem w przemyśle drobiarskim. Życie Weterynaryjne 93(6), 384–387 [publication in Polish].
  • 34. Domingo P., Mur I., Pomar V., Corominas H., Casademont J., de Benito N. (2020). The four horsemen of a viral Apocalypse: The pathogenesis of SARS-CoV-2 infection (COVID-19). EBioMedicine 58, 102887.
  • 35. van Doremalen N., Bushmaker T., Morris D.H., Holbrook M.G., Gamble A., Wiliamson B.N., Tamin A., Harcourt J.L., Thornburg N.J., Gerber S.I., Lloyd-Smith J.O., de Wit E., Munster V.J. (2020). Aerosol and surface stability of SARSCoV-2 as compared with SARS-CoV-1. N. Eng. J. Med. 382, 1564–1567.
  • 36. Drosten C., Günther S., Preiser W., van der Werf S., Brodt H.R., Becker S., Rabenau H., Panning M., Kolesnikova L., Fouchier R.A., Berger A., Burguière A.-M., Cinatl J., Eickmann M., Escriou N., Grywna K., Kramme S., Manuguerra J.C., Müller S., Rickerts V., Stürmer M., Vieth S., Klenk H.D., Osterhaus A.D., Schmitz H., Doerr H.W. (2003). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967–1976.
  • 37. Druce J., Garcia K., Tran T., Papadakis G., Birch C. (2012). Evaluation of swabs, transport media, and specimen transport conditions for optimal detection of viruses by PCR. J. Clin. Microbiol. 50(3), 1064–1065.
  • 38. EC (2020). European Commission. Communication from the Commission to the European Parliament, the European Council, the Council and the European Investment Bank. EU Strategy for COVID-19 vaccines. Brussels, 17.06.2020. COM/2020/245 final [data dostępu: 10.10.2020].
  • 39. ECDC (2020a). European Centre for Disease Prevention and Control. COVID-19 clusters and outbreaks in occupational settings in the EU/EEA and UK. Technical report [https://www.ecdc.europa.eu/sites/default/files/ documents/COVID-19-in-occupational-settings.pdf, data dostępu: 10.10.2020].
  • 40. ECDC (2020b). European Centre for Disease Prevention and Control. COVID-19 in children and the role of school settings in COVID-19 transmission, 6 August 2020. Stockholm: ECDC [https://www.ecdc.europa.eu/sites/ default/files/documents/COVID-19-schools-transmissionAugust%202020.pdf, data dostępu: 10.10.2020].
  • 41. ECDC (2020c). European Centre for Disease Prevention and Control. Guidelines for non-pharmaceutical interventions to reduce the impact of COVID-19 in the EU/EEA and the UK. ECDC: Stockholm. 24.09.2020 [https://www. ecdc.europa.eu/en/publications-data/covid-19-guidelines-non-pharmaceutical-interventions#copy-to-clipboard, data dostępu: 10.10.2020].
  • 42. ECDC (2020d). European Centre for Disease Prevention and Control. Resurgence of reported cases of COVID-19 in the EU/EEA, the UK and EU candidate and potential candidates. ECDC: Stockholm. 2.07.2020 [https:// www.ecdc.europa.eu/en/publications-data/rapid-riskassessment-resurgence-reported-cases-covid-19, data dostępu: 10.10.2020].
  • 43. EMA (2020a). European Medicines Agency. Coronavirus disease (COVID-19). Treatments and vaccines for COVID-19 [https://www.ema.europa.eu/en/human-regulatory/overview/ public-health-threats, data dostępu: 14.10.2020].
  • 44. EMA (2020b). European Medicines Agency. COVID-19 vaccines: key facts [https://www.ema.europa.eu/en/humanregulatory/overview/public-health-threats/coronavirusdisease-covid-19/covid-19-vaccines-key-facts, data dostępu: 2.10.2020].
  • 45. EU-OSHA (2020) [www.osha.gov, data dostępu: 12.10.2020].
  • 46. Faridi S., Niazi S., Sadeghi K., Naddafi K., Yavarian J., Shamsipour M., Jandaghi N.Z.S., Sadeghniiat K., Nabizadeh R., Yunesian M., Momeniha F., Mokamel A., Hassanvand M.S., Azad T.M. (2020). A field indoor air measurement of SARS-CoV-2 in the patient rooms of the largest hospital in Iran. Sci. Total Environ. 725, 138401.
  • 47. FDA (2020a). Food and Drug Administration. Development and licensure of vaccines to prevent COVID-19. Guidance for industry [https://www.fda.gov/regulatory-information/ search-fda-guidance-documents/development-andlicensure-vaccines-prevent-covid-19, data dostępu: 24.09.2020].
  • 48. FDA (2020b). Food and Drug Administration. FDA Guidance on conduct of clinical trials of medical products during COVID-19 public health emergency [https:// www.fda.gov/media/136238/download, data dostępu: 21.09.2020].
  • 49. Fehr A.R., Perlman S. (2015). Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 1282, 1–23.
  • 50. Forbes (2020). Kopalnie wstrzymują prace. Rekordowa liczba zakażeń koronawirusem na Śląsku [The mines are stopping work. Record number of coronavirus infections in Silesia], [https://www.forbes.pl/gospodarka/koronawiruswstrzymaniewydobycia-wegla-w-12-kopalniach-naslasku-od-9-czerwca-2020-r/2814pdk 30, data dostępu: 24.09.2020].
  • 51. Franki R. (2020). Comorbidities the rule in New York’s COVID-19 deaths. Hospitalist [https://www.the-hospitalist.org/hospitalist/article/220457/coronavirus-updates/comorbidities-rule-new-yorks-covid-19-deaths, data dostępu: 25.09.2020].
  • 52. Ganime A.C., Leite J.P.G., de Abreu Corrêa A., Melgaço F.G., Carvalho-Costa F.A., Miagostovich M.P. (2015). Evaluation of the swab sampling method to recover viruses from fomites. J. Virol. Methods 217, 24–27.
  • 53. Gaunt E.R., Hardie A., Claas E.C.J., Simmonds P., Templeton K.E. (2010). Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J. Clin. Microbiol. 48, 2940–2947.
  • 54. Gorbalenya A.E. (2001). Big nidovirus genome. When count and order of domains matter. Adv. Exp. Med. Biol. 494, 1–17.
  • 55. Gorbalenya A.E., Baker S.C., Baric R.S., deGroot R.J., Drosten C., Gulyaeva A.A., Haagmans B.L., Lauber C., Leontovich A.M., Neuman B.W., Penzar D., Perlman S., Poon L.L.M., Samborskiy D.V., Sidorov I.A., Sola I., Ziebuhr J. (2020). The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS- -CoV-2. Nature Microbiol. 5, 536–544.
  • 56. George B., McGee J., Giangrasso E., Finkelstein S., Wu S., Glatt A.E. (2020). What is the predictive value of a single nasopharyngeal SARS-cov-2 PCR swab test in a patient with COVID-like symptoms and/or significant COVID-19 exposure? Open Forum Infect. Dis. 7(10), ofaa399.
  • 57. Grifoni A., Weiskopf D., Ramirez S.I., Mateus J., Dan J.M., Rydyznski Moderbacher C., Rawlings S.A., Sutherland A., Premkumar L., Jadi R.S., Marrama D., de Silva A.M., Frazier A., Carlin A.F., Greenbaum J.A., Peters B., Krammer F., Smith D.M., Crotty S., Sette A. (2020). Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181, 1489-1501. e15.
  • 58. Gualano G., Musso M., Mosti S., Mencarini P., Mastrobattista S., Pareo C., Zaccarelli M., Migliorisi P., Vittozzi P., Zumla A., Ippolito G., Palmieri F. (2020). Usefulness of bronchoalveolar lavage in the management of patients presenting with lung infiltrates and suspect COVID-19-associated pneumonia: a case report. Int. J. Infect. Dis. 97, 174–176.
  • 59. Hafeez A., Ahmad S., Siddqui S., Ahmad M., Mishra S. (2020). A review of COVID-19 (Coronavirus Disease-2019) diagnosis, treatments and prevention. EJMO 4(2), 116–125.
  • 60. Harmooshi N.N., Shirbandi K., Rahim F. (2020). Environmental concern regarding the effect of humidity and temperature on 2019-nCoV survival: fact or fiction. Environ. Sci. Pollut. Res. 27(29), 36027–36036.
  • 61. Hatagishi E., Okamoto M., Ohmiya S., Yano H., Hori T., Saito W., Miki H., Suzuki Y., Saito R., Yamamoto T., Shoji M., Morisaki Y., Sakata S., Nishimura H. (2014). Establishment and clinical applications of a portable system for capturing influenza viruses released through coughing. PLoS One 9, e103560.
  • 62. van der Hoek L., Pyrć K., Berkhout B. (2006). Human coronavirus NL63, a new respiratory virus. FEMS Microbiol. Rev. 30, 760-773.
  • 63. Hogan C.J. Jr., Kettleson E.M., Lee M.-H., Ramaswami B., Angenent L.T., Biswas P. (2005). Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. J. App. Microbiol. 99, 1422– 1434.
  • 64. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506.
  • 65. Ioannidis J.P.A., Axfors C., Contopoulos-Ioannidis D.G. (2020). Population-level COVID-19 mortality risk for nonelderly individuals overall and for non-elderly individuals without underlying diseases in pandemic epicenters. Environ. Res. 188, 109890.
  • 66. Ivanov K.A., Hertzig T., Rozanov M., Bayer S., Thiel V., Gorbalenya A.E., Ziebuhr J. (2004). Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proc. Natl. Acad. Sci. USA 101, 12694–12699.
  • 67. Johnson F.B. (1990). Transport of viral specimens. Clin. Microbiol. Rev. 3(2), 120–131.
  • 68. Julian T.R., Tamayo F.J., Leckie J.O., Boehm A.B. (2011). Comparison of surface sampling methods for virus recovery from fomites. App. Environ. Microbiol. 77(19), 6918–6925.
  • 69. Kok F.A., Kruip M.J.H.A., van der Meer N.J.M., Arbous M.S., Gommers D.A.M.P.J., Kant K.M., Kaptein F.H.J., van Paassen J., Stals M.A.M., Huisman M.V., Endeman H. (2020). Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 191, 145–147.
  • 70. Koh D., Goh H.P. (2020). Occupational health responses to COVID-19: what lessons can we learn from SARS? J. Occup. Health 62(1), e12128.
  • 71. Kramer A., Schwebke I., Kampf G. (2006). How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 6, 130.
  • 72. Ksiazek T.G., Erdman D., Goldsmith C.S., Zaki S.R., Peret T., Emery S., Tong S., Urbani C., Comer J.A., Lim W., Rollin P.E., Dowell S.F., Ling A.-E., Humphrey C.D., Shieh W.-J., Guarner J., Paddock C.D., Rota P., Fields B., DeRisi J., Yang J.-Y., Cox N., Hughes J.M., LeDuc J.W., Bellini W.J., Anderson L.J., SARS Working Group (2003). A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348(20), 1953–1966.
  • 73. La Repubblica (2020). Coronavirus, focolai nel Mantovano tra macelli e salumifici: 68 persone positive [https://milano. repubblica.it/cronaca/2020/07/05/news/coronavirus_ focolai_nel_mantovano_tra_macelli_e_sal umifici_68_ persone_positive-261021987/, data dostępu: 16.09.2020].
  • 74. Lan J., Ge J., Yu J., Shan S., Zhou H., Fan S., Zhang Q., Shi X., Wang Q., Zhang L., Wang X. (2020). Structure of the SARS- -CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215–220.
  • 75. Lane M.A., Brownsword E.A., Morgan J.S., Babiker A., Vanairsdale S.A., Lyon G.M., Mehta A.K., Ingersoll J.M., Lindsley W.G., Kraft C.S. (2020). Bioaerosol sampling of a ventilated patient with COVID-19. Am. J. Infect. Control.
  • 76. Latorre-Margalef N., Avril A., Tolf C., Olsen B., Waldenström J. (2016). How does sampling methodology influence molecular detection and isolation success in influenza A virus field studies? App. Environ. Microbiol. 82(4), 1147– 1153.
  • 77. Lauer S.A., Grantz K.H., Bi Q., Jones F.K., Zheng Q., Meredith H.R., Azman A.S., Reich N.G., Lessler J. (2020). The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann. Intern. Med. 172(9), 577–582.
  • 78. Lazzerini M., Putoto G. (2020). COVID-19 in Italy: momentous decisions and many uncertainties. Lancet Glob. Health 8(5), e641–e642.
  • 79. Lednicky J.A., Loeb J.C. (2013). Detection and isolation of airborne influenza A H3N2 virus using a sioutas personal cascade impactor sampler. Influenza Res. Treat. 656825.
  • 80. Lee H.J., Shieh C.K., Gorbalenya A.E., Koonin E.V., La Monica N., Tuler J., Bagdzhadzhyan A., Lai M.M. (1991). The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology 180, 567–582.
  • 81. Liu K., Chen Y., Lin R., Han K. (2020). Clinical features of COVID-19 in elderly patients: a comparison with young and middle-aged patients. J. Infect. 80(6), e14–e18.
  • 82. Liu Ying, Gayle A.A., Wilder-Smith A., Rocklöv J. (2020). The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med. 27(2), taaa021.
  • 83. Liu Yongijan, Li T., Deng Y., Liu S., Zhang D., Li H., Wang X., Jia L., Han J., Bei Z., Zhou Y., Li L., Li J. (2020). Stability of SARS-CoV-2 on environmental surfaces and in human excreta. MedRxiv.
  • 84. Lundin A., Dijkman R., Bergström T., Kann N., Adamiak B., Hannoun C., Kindler E., Jónsdóttir H.R., Muth D., Kint J., Forlenza M., Müller M.A., Drosten C., Thiel V., Trybala E. (2014). Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the Middle East respiratory syndrome virus. PLoS Pathog. 10(5), e1004166.
  • 85. Mao L., Jin H., Wang M., Hu Y., Chen S., He Q., Chang J., Hong C., Zhou Y., Wang D., Miao X., Li Y., Hu B. (2020). Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 77, 683–690.
  • 86. Martinez R.M. (2020). Clinical samples for SARS-CoV-2 detection: review of the early literature. Clin. Microbiol. Newsl. 42(15), 121–127.
  • 87. McIntosh K., Dees J.H., Becker W.B., Kapikian A.Z., Chanock R.M. (1967). Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc. Natl. Acad. Sci. USA 57(4), 933–940.
  • 88. Memarzadeh F. (2012). Literature review of the effect of temperature and humidity on viruses. ASHRAE Tran. 118(1), 1049–1060.
  • 89. Menachery V.D., Gralinski L.E., Mitchell H.D., Dinnon K.H. III, Leist S.R., Yount B.L. Jr, McAnarney E.T., Graham R.L., Waters K.M,. Baric R.S. (2018). Combination attenuation offers strategy for live attenuated coronavirus vaccines. J. Virol. 92, e00710-18.
  • 90. Money.pl (2020). Kopalnie wylęgarnią koronawirusa. Ponad 6,6 tys. zakażonych w 3 spółkach [The mines are the incubators of coronavirus. Over 6.6 thousand infected in 3 companies], [https://www.money.pl/gospodarka/kopalniewylegarniakoronawirusa-ponad-66-tys-zakazonychw-3-spolkach-6533789016266881a.html, data dostępu: 23.09.2020].
  • 91. Monto A.S. (1974). Medical reviews. Coronaviruses. Yale J. Biol. Med. 47, 234–251.
  • 92. Nguyen L.H., Drew D.A., Graham M.S., Joshi A.D. , Guo C.G., Ma W., Mehta R.S., Sikavi D.R., Lo C.H., Kwon S., Song M., Mucci L.A., Stampfer M.J., Willett W.C., Eliassen A.H., Hart J.E., Chavarro J.E., Rich-Edwards J.W., Davies R., Capdevila J., Lee K.A., Lochlainn M.N., Varsavsky T., Graham M., Sudre C.H., Cardoso M.J., Wolf J., Ourselin S., Steves C., Spector T., Chan A.T. i in. (2020). Risk of COVID-19 among frontline healthcare workers and the general community: a prospective cohort study. Lancet Pub. Health (5)9, e475– e483.
  • 93. Nicholls J.M., Poon L.L., Lee K.C., Ng W.F., Lai S.T. et al. (2003). Lung pathology of fatal severe acute respiratory syndrome. Lancet 361, 1773-1778.
  • 94. Noroozi R., Branicki W., Pyrć K., Łabaj P.P., Pospiech E., Taheri M., Ghafouri-Fard S. (2020). Altered cytokine levels and immune responses in patients with SARS-CoV-2 infection an related conditions. Cytokine 133, 155143.
  • 95. Pandey S.C., Pande V., Satia D., Upreti S., Samant M. (2020). Vaccination strategies to combat novel corona virus SARS- -CoV-2. Life Sci. 256, 117956.
  • 96. Park S.Y., Kim Y.-M., Yi S., Lee S., Na B.-J., Kim C.B., Kim J.-I., Kim H.S., Kim Y.B., Park Y., Huh I.S., Kim H.K., Yoon H.J., Jang H., Kim K., Chang Y., Kim I., Lee H., Gwack J., Kim S.S., Kim M., Kweon S., Choe Y.J., Park O., Park Y..J, Jeong E.K. (2020). Coronavirus disease outbreak in call center, South Korea. Emerg. Infect. Dis. 26(8), 1666–1670.
  • 97. Perlman S., Netland J. (2009). Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol. 7, 439–450.
  • 98. Ministerstwo Rozwoju, Pracy i Technologii (2020). Wytyczne dla branż [https://www.gov.pl/web/rozwoj-pracatechnologia/wytyczne-dla-branz, data dostępu: 10.10.2020].
  • 99. Pouliakas K., Branka J. (2020). EU jobs at highest risk of Covid-19 social distancing: is the pandemic exacerbating the labour market divide? Luxembourg: Publications Office of the European Union. Cedefop working paper. No. 1. [www.cedefop.europa.eu/en/publications-andresources/ publications/6201, data dostępu: 10.09.2020].
  • 100. Public Health England (2020). COVID-19: guidance on alternative swab types and transport media [https:// www.gov.uk/government/publications/wuhan-novelcoronavirus-guidance-for-clinical-diagnostic-laboratories/ covid-19-guidance-for-alternative-swab-types-andtransport-media, data dostępu: 25.09.2020].
  • 101. Pyrć K. (2015). Ludzkie koronawirusy [The human coronaviruses]. Post. N. Med. [Progress in Medicine]. 28(4B), 48–54.
  • 102. Pyrć K., Berkhout B., van der Hoek L. (2007). The novel human coronavirus NL63 and HKU1. J. Virol. 81, 3051– 3057.
  • 103. PZH (2020). Państwowy Zakład Higieny [National Institute of Hygiene]. Ile czasu potrzebujemy na opracowanie nowej szczepionki przeciw COVID-19? [How much time do we need to develop new COVID-19 vaccine?]. 10.09.2020 [https://szczepienia.pzh.gov.pl/faq/ile-czasu-potrzebujemy-na-opracowane-nowej-szczepionki-przeciwcovid-19/, data dostępu: 23.09.2020].
  • 104. Rabaan A.A., Al-Ahmed S.H., Haque S., Sah R., Tiwari R., Malik Y.S., Dhama K., Yatoo M.I., Bonilla-Aldana D.K., Rodriguez-Morales A.J. (2020). SARS-CoV-2, SARS-CoV, and MERS-CoV: a comparative overview. Infez. Med. 28(2), 174–184.
  • 105. Ratnesar-Shumate S., Williams G., Green B., Krause M., Holland B., Wood S., Bohannon J., Boydston J., Freeburger D., Hooper I., Beck K., Yeager J., Altamura L.A., Biryukov J., Yolitz J., Schuit M., Wahl V., Hevey M., Dabisch P. (2020). Simulated sunlight rapidly inactivates SARS-CoV-2 on surfaces. J. Infect. Dis. 222(2), 214-222.
  • 106. RCB (2020). Rządowe Centrum Bezpieczeństwa [Government Centre for Security], [https://www.gov.pl/ web/koronawirus/wykaz-zarazen-koronawirusem-sarscov-2, data dostępu: 17.09.2020].
  • 107. Renu K., Prasanna P.L., Gopalakrishnan A.V. (2020). Coronaviruses pathogenesis, comorbidities and multiorgan damage: a review. Life Sci. 255, 117839.
  • 108. Ronco C., Reis T., Husain-Syed F. (2020). Management of acute kidney injury in patients with COVID-19. Lancet Resp. Med. 8(7), 738–742.
  • 109. Rota P.A., Oberste M.S., Monroe S.S., Nix W.A., Campagnoli R., Icenogle J.P., Peñaranda S., Bankamp B., Maher K., Chen M.-H., Tong S., Tamin A., Lowe L., Frace M., DeRisi J.L., Chen Q., Wang D., Erdman D.D., Peret T.C., Burns C., Ksiazek T.G., Rollin P.E., Sanchez A., Liffick S., Holloway B., Limor J., McCaustland K., Olsen-Rasmussen M., Fouchier R., Günther S., Osterhaus A.D., Drosten C., Pallansch M.A., Anderson L.J., Bellini W.J. (2003). Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394–1399.
  • 110. Rothe C., Schunk M., Sothmann P., Bretzel G., Froeschl G., Wallrauch C., Zimmer T., Thiel V., Janke C., Guggemos W., Seilmaier M., Drosten C., Vollmar P., Zwirglmaier K., Zange S., Wölfel R., Hoelscher M. (2020). Transmission of 2019- -nCoV infection from an asymptomatic contact in Germany. N. Engl. J. Med. 382(10), 970–971.
  • 111. Rymer W., Wroczyńska A., Matkowska-Kocjan A. (2020). COVID-19 – aktualny stan wiedzy [COVID-19 – current state of knowledge]. Med. Prakt. [Practical Medicine] 3, 102–121.
  • 112. Saberi A., Gulyaeva A.A., Brubacher J.L., Newmark P.A., Gorbalenya A.E. (2018). A planarian nidovirus expands the limits of RNA genome size. PLoS Pathog. 14, e1007314.
  • 113. Serwis Rzeczypospolitej Polskiej (2020). Aktualne zasady i ograniczenia. 10.10.2020 [https://www.gov.pl/web/ koronawirus/aktualne-zasady-i-ograniczenia, data dostępu: 17.10.2020].
  • 114. Smith T.F. (2000). Specimen requirements; selection, collection, transport, and processing. [In:] S. Spector, R.L. Hodinka, S.A. Young. Clinical Virology Manual, 3rd edition. ASM Press. Washington, D.C.
  • 115. Snijder E.J., Decroly E., Ziebuhr J. (2016). The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv. Virus Res. 96, 59–126.
  • 116. Sobsey M.D., Meschke J.S. (2003). Virus survival in the environment with special attention to survival in sewage droplets and other environmental media of fecal or respiratory origin.
  • 117. Stobnicka A., Gołofit-Szymczak M., Wójcik-Fatla A., Zając V., Korczyńska-Smolec J., Górny R.L. (2018). Prevalence of human parainfluenza viruses and noroviruses genomes on office fomites. Food Environ. Virol. 10, 133–140.
  • 118. Stobnicka-Kupiec A., Gołofit-Szymczak M. (2020). Koronawirusy – patogeny XXI wieku [Coronaviruses – the pathogens of the 21st century]. Bezpieczeństwo Pracy. Nauka i Praktyka [Occupational Safety. Science and Practice] 4, 6–8.
  • 119. Stobnicka-Kupiec A., Gołofit-Szymczak M., Górny R.L., Cyprowski M. (2020). Prevalence of Bovine Leukemia Virus (BLV) and Bovine Adenovirus (BAdV) genomes among air and surface samples in dairy production. J. Occup. Environ. Hyg. 17(6), 312–323.
  • 120. Stobnicka-Kupiec A., Górny R.L. (2018). Metody detekcji wirusów w różnych środowiskach pracy [Methods of virus detection in various work environment]. Podstawy i Metody Oceny Środowiska Pracy [Principles and Methods of Assessing the Working Environment] 3(97), 5–18.
  • 121. Summers A. (2020). Spain imposes regional lockdowns amid resurgence of COVID-19. World Socialist Web Site [https:// www.wsws.org/en/articles/2020/07/10/spai-j10.html].
  • 122. Tay M.Z., Poh C.M., Rénia L., MacAry P.A., Ng L.F.P. (2020). The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20, 363–374.
  • 123. Tyrrell D.A.J., Almedia J.D., Berry D.M., Cunningham C.H., Hamre D., Hofstad M.S., Malluci L., McIntosh K. (1968). Coronaviruses. Nature 220, 650.
  • 124. Tyrrell D.A., Cohen S., Schlarb J.E. (1993). Signs and symptoms in common colds. Epidemiol. Infect. 111, 143–156.
  • 125. Udugama B., Kadhiresan P., Kozlowski H.N., Malekjahani A., Osborne M., Li V.Y.C., Chen H., Mubareka S., Gubbay J.B., Chan W.C.W. (2020). Diagnosing COVID-19: the disease and tools for detection. ACS Nano. 14(4), 3822–3835.
  • 126. Ujike M., Taguchi F. (2015). Incorporation of spike and membrane glycoproteins into coronavirus virions. Viruses 7, 1700–1725.
  • 127. UK Office for National Statistics (2020). Coronavirus (COVID-19) related deaths by occupation, England and Wales: deaths registered up to and including 25 May 2020 [https://www.ons.gov.uk/releases/coronaviruscovid19 relateddeathsbyoccupationenglandandwalesdeathsregister eduptoandincluding25may2020, data dostępu: 23.09.2020].
  • 128. Verreault D., Moineau S., Duchaine C. (2008). Methods for sampling of airborne viruses. Microbiol. Mol. Biol. Rev. 72(3), 413–444.
  • 129. Viner R.M., Whittaker E. (2020). Kawasaki-like disease: emerging complication during the COVID-19 pandemic. Lancet 395(10239), 1741–1743.
  • 130. Wang C., Horby P.W., Hayden F.G., Gao G.F. (2020). A novel coronavirus outbreak of global health concern. Lancet 395(10223), 470–473.
  • 131. Wang X.-W., Li J.-S., Jin M., Zhen B., Kong Q.-X., Song N., Xiao W.-J., Yin J., Wei W., Wang G.-J., Si B.-Y., Guo B.-Z., Liu C., Ou G.-R., Wang M.-N., Fang T.-Y., Chao F.-H., Li J.-W. (2005). Study on the resistance of severe acute respiratory syndrome-associated coronavirus. J. Virol. Methods 126(1– 2), 171–177.
  • 132. Weiss S.R., Navas-Martin S. (2005). Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol. Mol. Biol. Rev. 69, 635–664.
  • 133. WHO (2019). World Health Organization. MERS monthly summary, November 2019 [https://www.who.int/emergencies/mers-cov/en/, data dostępu: 20.09.2020].
  • 134. WHO (2020a). World Health Organization. Actions for consideration in the care and protection of vulnerable population groups for COVID-19 [https://www.who.int/westernpacific/internal-publications-detail/WPR-DSE-2020- 021-eng, data dostępu: 28.06.2020].
  • 135. WHO (2020b). World Health Organization. Coronavirus disease (COVID-19) advice for the public [https://www. who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public, data dostępu: 7.10.2020].
  • 136. WHO (2020c). World Health Organization. COVAX: working for global equitable access to COVID-19 vaccines [https://www.who.int/initiatives/act-accelerator/covax, data dostępu: 7.10.2020].
  • 137. WHO (2020d). World Health Organization. Covid-19 SPRP. Operational planning guidance to support country preparedness and response. 22.05.2020 [https://www. who.int/publications/i/item/draft-operational-planningguidance-for-un-country-teams, data dostępu: 7.10.2020].
  • 138. WHO (2020e). World Health Organization. Draft landscape of COVID-19 candidate vaccines [https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate- -vaccines, data dostępu: 2.10.2020].
  • 139. WHO (2020f). World Health Organization. First data on stability and resistance of SARS coronavirus compiled by members of WHO laboratory network [https://www. who.int/csr/sars/survival_2003_05_04/en/, data dostępu: 2.10.2020].
  • 140. WHO (2020g). World Health Organization. Novel coronavirus (2019-ncov) technical guidance: laboratory testing for 2019-ncov in humans 2020 [www.who.int/emergencies/ diseases/novel-coronavirus-2019/technical-guidance/laboratory-guidance, data dostępu: 2.10.2020].
  • 141. WNP.pl (2020). Koronawirus: dwanaście kopalń na Śląsku przerwie wydobycie [Coronavirus: Twelve mines in Silesia will stop mining], [https://www.wnp.pl/gornictwo/koronawirus-dwanascie-kopaln-na-slasku-przerwiewydobycie,399345.html, data dostępu: 2.10.2020].
  • 142. WSSE (2020). Wojewódzka Stacja Sanitarno-Epidemiologiczna [http://www.wsse.gda.pl/aktualnosci-i-komunikaty/aktualnosci/1037-wymagania-dotyczace-pobraniai-transportu-materialu-do-badan-metoda-rt-pcr-wkierunku-zakazen-ukladu-oddechowego-powodowanychprzez-koronawirusy-sars-mers-2019ncov-wuhan-chiny, data dostępu: 25.10.2020].
  • 143. Wong C.K., Lam C.W., Wu A.K., Ip W.K., Lee N.L.S. et al. (2004). Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol. 136, 95–103.
  • 144. Woo P.C.Y., Lau S.K.P., Tsoi H.-W., Huang Y., Poon R.W.S., Chu C.-M., Lee R.A., Luk W.-K., Wong G.K.M, Wong B.H.L., Cheng V.C.C., Tang B.S.F., Wu A.K.L., Yung R.W.H., Chen H., Guan Y., Chan K.-H., Yuen K.-Y. (2005). Clinical and molecular epidemiological features of coronavirus HKU- -1-associated community-acquired pneumonia. J. Infect. Dis. 192, 1898–1907.
  • 145. Woo P.C.Y., Lau S.K.P., Yip C.C.Y. Huang Y., Yuen K.-Y. (2009). More and more coronaviruses: human coronavirus HKU1. Viruses 1, 57–71.
  • 146. Worldometer (2020) [https://www.worldometers.info/coronavirus, data dostępu: 25.11.2020].
  • 147. Wortham J.M., Lee J.T., Althomsons S., Latash J., Davidson A., Guerra K., Murray K., McGibbon E., Pichardo C., Toro B., Li L., Paladini M., Eddy M.L., Reilly K.H., McHugh L., Thomas D., Tsai S., Ojo M., Rolland S., Bhat M., Hutchinson K., Sabel J., Eckel S., Collins J., Donovan C., Cope A., Kawasaki B., McLafferty S., Alden N., Herlihy R., Barbeau B., Dunn A.C., Clark C., Pontones P., McLafferty M.L., Sidelinger D.E., Krueger A., Kollmann L., Larson L., Holzbauer S., Lynfield R., Westergaard R., Crawford R., Zhao L., Bressler J.M., Read J.S., Dunn J., Lewis A., Richardson G., Hand J., Sokol T., Adkins S.H., Leitgeb B., Pindyck T., Eure T., Wong K., Datta D., Appiah G.D., Brown J., Traxler R., Koumans E.H., Reagan-Steiner S. (2020). Characteristics of persons who died with COVID-19 – United States, February 12–May 18, 2020. MMWR 69, 923–929.
  • 148. Xia J., Tong J., Liu M., Shen Y., Guo D. (2020). Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS‐CoV‐2 infection. J. Med. Virol. 92(6), 589–594.
  • 149. Xie X., Li Y., Sun H., Liu L. (2009). Exhaled droplets due to talking and coughing. J. R. S. Interface 6, 703–714.
  • 150. Yu K.-P., Chen Y.-P., Gong J.-Y., Chen Y.-C., Cheng C.-C. (2016). Improving the collection efficiency of the liquid impinger for ultrafine particles and viral aerosols by applying granular bed filtration. J. Aerosol Sci. 101, 133–143.
  • 151. Zaki A.M., van Boheemen S., Bestebroer T.M., Osterhaus A.D., Fouchier R.A. (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367, 1814–1820.
  • 152. Zawilińska B., Szostek S. (2020). Koronawirusy o niskiej i wysokiej patogenności, zakażające człowieka [Low and highly pathogenic coronaviruses infecting humans]. Zakażenia XXI Wieku [Infections of the 21st Century] 3(1), 1–10.
  • 153. Zhang D.X. (2020). SARS-CoV-2: air/aerosols and surfaces in laboratory and clinical settings. J. Hosp. Infect. 105(3), 577–579. ]
  • 154. Zhao Y., Aarnik J.A., Wang W., Fabri T., Koerkamp P.W.G.G., de Jong M.C.M. (2014). Airborne virus sampling: efficiencies of samplers and their detection limits for infectious bursal disease virus (IBDV). Ann. Agric. Environ. Med. 21(3), 464–471.
  • 155. Zheng Y.-Y., Ma Y.-T., Zhang J.-Y., Xie X. (2020). COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 17, 259– 260.
  • 156. Ziebuhr J. (2005). The coronavirus replicase. Curr. Top. Microbiol. Immunol. 287, 57–94.
  • 157. Ziebuhr J., Thiel V., Gorbalenya A.E. (2001). The autocatalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain-like proteases that cleave the same peptide bond. J. Biol. Chem. 276, 33220–33232.
  • 158. Zumla A., Chan J.F., Azhar E.I., Hui D.S., Yuen K.-Y. (2016). Coronaviruses: drug discovery and therapeutic options. Nat. Rev. Drug Discov. 15, 327–347.
  • 159. Zumla A., Hui D.S., Perlman S. (2015). Middle East respiratory syndrome. Lancet 386, 995–1007.
  • 160. Zuo Z., Kuehn T.H., Verma H., Kumar S., Goyal S.M., Appert J., Raynor P.C., Ge S., Pui D.Y.H. (2013). Association of airborne virus infectivity and survivability with its carrier particle size. Aerosol Sci. Tech. 47(4), 373–382.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf1a4305-50b5-4bfe-a9b8-3eaa21d32c21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.