PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Alternating Aerobic and Anoxic Conditions to Eliminate Sludge Accumulation in the Oxidation Ditch System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the present study is to investigate the performance of an upgraded oxidation ditch (OD) system, which was designed and implemented to solve the problem of sludge accumulation at the bottom as well as to get the best removal efficiency of total nitrogen (TN). The upgrading concept is based on dividing the operating volume of the upgraded OD to achieve interchanging between aerobic and anoxic circumstances in order to provide simultaneous nitrification and denitrification (SND). The obtained results indicated that the average TN removal efficiency was 60%, which could be obtained due to a highly efficient SND approach. In addition, the better TN removal efficiency corresponds to the lower sludge volume index (SVI), which reflects the efficiency of the upgraded OD in preventing the accumulation of sludge at the bottom. Effluent ammonium-nitrogen (NH4+-N) and nitrate (NO3--N) concentrations corresponding to a minimum SVI of 41.9 mL/g were 8.6 mg/L for NH4+-N and 8.6 mg/L for NO3--N, respectively. Furthermore, the upgraded OD successfully removes 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and total suspended solids (TSS) below the permissible limit for final effluent of 60, 80, and 50 mg/L respectively.
Rocznik
Strony
304--314
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Public Works Engineering Department, Faculty of Engineering, Tanta University, Tanta, Egypt
  • Public Works Engineering Department, Faculty of Engineering, Tanta University, Tanta, Egypt
Bibliografia
  • 1. Abusam, A., Keesman, K.J., Spanjers, H., Van Straten, G., Meinema, K. 2002. Effect of oxidation ditch horizontal velocity on the nitrogen removal process. Official Publication of the European Water Association (EWA), 6, 1–9.
  • 2. Agbewornu, K.C.D., Adyel, T.M., Zhai, J. 2021. Optimizing nitrogen removal in a hybrid oxidation ditch. Journal of Environmental Chemical Engineering, 9(4), 105443.
  • 3. Ammary, B.Y., Radaideh, J.A. 2005. Simultaneous nitrification and denitrification in an oxidation ditch plant. Chemical and biochemical engineering quarterly, 19(2), 207–212.
  • 4. Chen, X., Fujiwara, T., Ohtoshi, K., Inamori, S., Nakamachi, K., Tsuno, H. 2010. Evaluation of a novel oxidation ditch system for biological nitrogen and phosphorus removal from domestic sewage. Water Science and Technology, 62(8), 1745–1754.
  • 5. Fouad, M., El-Morsy, A. 2012. Upgrade of a large scale oxidation ditch plant. Water Practice and Technology, 7(2).
  • 6. Fouad, M., El-Morsy, A. 2014. Sludge accumulation pattern inside oxidation ditch case study. Water science and technology, 69(12), 2468–2475.
  • 7. Gillot, S., Capela, S., Heduit, A. 2000. Effect of horizontal flow on oxygen transfer in clean water and in clean water with surfactants. Water Research, 34(2), 678–683.
  • 8. Gogina, E., Gulshin, I. 2021. Characteristics of Low-Oxygen Oxidation Ditch with Improved Nitrogen Removal. Water, 13(24), 3603.
  • 9. Hartley, K.J. 2008. Controlling sludge settleability in the oxidation ditch process. Water research, 42(6–7), 1459–1466.
  • 10. Hasselkus, W.N. 2000. EPA Wastewater Technology Fact Sheets: We’re looking for a few good technologies. In WEFTEC 2000. Water Environment Federation, 802–822.
  • 11. Latifa, H., Hédi, S., Arnaud, C., Jérôme, M., Mathieu, S. 2010. Nitrogen removal in an oxidation ditch. In 2010 2nd International Conference on Chemical, Biological and Environmental Engineering IEEE, 348–351.
  • 12. Li, H., Fang-ying, J., Wei-wei, Z., Xuan, X., Ruihong, C., Na, L., Xiao-ling, H. 2014. Deposition pattern, effect on nitrogen removal and component analysis of deposited sludge in a carrousel oxidation ditch. Desalination and Water Treatment, 52(31–33), 6079–6087.
  • 13. Liu, Y., Shi, H., Xia, L., Shi, H., Shen, T., Wang, Z., Wang, Y. 2010. Study of operational conditions of simultaneous nitrification and denitrification in a Carrousel oxidation ditch for domestic wastewater treatment. Bioresource technology, 101(3), 901–906.
  • 14. Metcalf and Eddy, Inc, Asano, T., Burton, F. L., Leverenz, H., Tsuchihashi, R., & Tchobanoglous, G. (2007). Water reuse. United States of America: McGraw-Hill Professional Publishing.
  • 15. Pochana, K., Keller, J. 1999. Study of factors affecting simultaneous nitrification and denitrification (SND). Water Science and Technology, 39(6), 61–68.
  • 16. Raboni, M., Viotti, P., Rada, E.C., Conti, F., Boni, M.R. 2020. The sensitivity of a specific denitrification rate under the dissolved oxygen pressure. International Journal of Environmental Research and Public Health, 17(24), 9366.
  • 17. Schipper, L.A., Robertson, W.D., Gold, A.J., Jaynes, D.B., Cameron, S.C. 2010. Denitrifying bioreactors – an approach for reducing nitrate loads to receiving waters. Ecological Engineering, 36(11), 1532–1543.
  • 18. Standard Methods 2017. Standard methods for the examination of water and wastewater. 23rd ed., American Public Health Association, Washington, USA.
  • 19. Stensel, H.D., Coleman, T.E. 2000. Technology Assessments: Nitrogen Removal Using Oxidation Ditches: Project 96-CTS-1. Water Environment Research Foundation.
  • 20. Wang, Q., Ding, C., Tao, G., He, J. 2019a. Analysis of enhanced nitrogen removal mechanisms in a validation wastewater treatment plant containing anammox bacteria. Applied Microbiology and Biotechnology, 103(3), 1255–1265.
  • 21. Wang, X., Chen, T., Jin, P., Zhang, A., Gao, C., Qi, X., Zhang, Y. 2019b. Enhanced total nitrogen removal performance in a full scale Orbal oxidation ditch by a novel step aeration mode. Bioresource Technology, 294, 122228.
  • 22. Yan, L., Liu, S., Liu, Q., Zhang, M., Liu, Y., Wen, Y., Yang, Q. 2019. Improved performance of simultaneous nitrification and denitrification via nitrite in an oxygen-limited SBR by alternating the DO. Bioresource Technology, 275, 153–162.
  • 23. Yongzhen, P., Hongxun, H., Shuying, W., Youwei, C., Zhiguo, Y. 2008. Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system. Journal of Environmental Sciences, 20(4), 398–403.
  • 24. Zhan, J.X., Ikehata, M., Mayuzumi, M., Koizumi, E., Kawaguchi, Y., Hashimoto, T. 2013. An aeration control strategy for oxidation ditch processes based on online oxygen requirement estimation. Water Science and Technology, 68(1), 76–82.
  • 25. Zhang, M., Yao, J., Wang, X., Hong, Y., Chen, Y. 2019. The microbial community in filamentous bulking sludge with the ultra-low sludge loading and long sludge retention time in oxidation ditch. Scientific Reports, 9(1), 1–10.
  • 26. Zhao, H.W., Mavinic, D.S., Oldham, W.K., Koch, F.A. 1999. Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage. Water Research, 33(4), 961–970.
  • 27. Zhou, X., Guo, X., Han, Y., Liu, J., Ren, J., Wang, Y., Guo, Y. 2012. Enhancing nitrogen removal in an Orbal oxidation ditch by optimization of oxygen supply: practice in a full-scale municipal wastewater treatment plant. Bioprocess and Biosystems Engineering, 35(7), 1097–1105.
  • 28. Zhou, X., Han, Y., Guo, X. 2013. Enhanced total nitrogen removal performance in a modified Orbal oxidation ditch system with internal nitrate recycle. Chemical Engineering Journal, 228, 124–131.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf18e37e-ca91-40d5-a1bc-f78282faf757
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.