PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generation of optical needle and dark channel by tight focusing of radially polarized circular partially coherent beams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We theoretically investigate the tight focusing of radially polarized circular partially coherent(RPCPC) beams through a high numerical aperture objective. The sub-wavelength super-long optical needle and dark channel can be obtained near the focus, by engineering the source coherent length of the incident RPCPC beams. The length of the optical needle and the dark channel can be adjusted, and the obtained maximal lengths of the optical needle and the dark channel are both 22λ.The full width at half maximum of the optical needle and the dark channel are 0.6λ and 0.48λ, respectively.
Czasopismo
Rocznik
Strony
229--240
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
  • Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
  • College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
autor
  • College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
  • Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
  • College of Information and Electronic Engineering, Liming Vocational University, Quanzhou 362000, China
autor
  • Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
autor
  • Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
Bibliografia
  • [1] WANG H., SHI L., LUKYANCHUK B., SHEPPARD C., CHONG C., Creation of a needle of longitudinally poνσlarized light in vacuum using binary optics, Nature Photonics 2, 2008, pp. 501–505, DOI:10.1038/nphoton.2008.127.
  • [2] SCOTT T.F., KOWALSKI B.A., SULLIVAN A.C., BOWMAN C.N., MCLEOD R.R., Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography, Science 324(5929), 2009, pp. 913–917, DOI:10.1126/science.1167610.
  • [3] YANG J., GONG L., SHEN Y., WANG L.V., Synthetic Bessel light needle for extended depth-of-field microscopy, Applied Physics Letters 113(18), 2018, article 181104, DOI:10.1063/1.5058163.
  • [4] CHEN Z., HU X., JI X., PU J., Needle beam generated by a laser beam passing through a scattering medium, IEEE Photonics Journal 10(5), 2018, article 6501108, DOI:10.1109/JPHOT.2018.2871216.
  • [5] MAN Z., MIN C., DU L., ZHANG Y., ZHU S., YUAN X., Sub-wavelength sized transversely polarized optical needle with exceptionally suppressed side-lobes, Optics Express 24(2), 2016, pp. 874–882, DOI:10.1364/OE.24.000874.
  • [6] HU K., CHEN Z., PU J., Generation of super-length optical needle by focusing hybridly polarized vector beams through a dielectric interface, Optics Letters 37(16), 2012, pp. 3303–3305, DOI:10.1364/OL.37.003303.
  • [7] LALITHAMBIGAI K., SURESH P., RAVI V., PRABAKARAN K., JAROSZEWICZ Z., RAJESH K.B., ANBARASAN P.M.,PILLAI T.V.S., Generation of sub wavelength super-long dark channel using high NA lens axicon, Optics Letters 37(6), 2012, pp. 999–1001, DOI:10.1364/OL.37.000999.
  • [8] LIU Y., ZHANG Z., LI C., LIU D., KUANG C., Rotating light fields of an azimuthally polarized light beam generated by two-belt spiral phase modulation, Journal of Modern Optics 65(20), 2018, pp. 2295–2300, DOI:10.1080/09500340.2018.1506056.
  • [9] ZHOU G., JI Z., ZHOU Y., CHEN R., Focusing of radially polarized Lorentz–Gauss beams with the power–exponent–phase vortex, Journal of Modern Optics 65(7), 2018, pp. 796–802, DOI:10.1080/09500340.2017.1401134.
  • [10] XU H., ZHANG W., QU J., HUANG W., Improving the trapping capability using radially polarized narrow-width annular beam, Journal of Modern Optics 63(5), 2016, pp. 495–500, DOI:10.1080/09500340.2014.922634.
  • [11] WENG X., SONG Q., LI X., GAO X., GUO H., QU J., ZHUANG S., Free-space creation of ultralong anti-diffracting beam with multiple energy oscillations adjusted using optical pen, Nature Communications 9, 2018, article 5035, DOI:10.1038/s41467-018-07282-y.
  • [12] MAUCHER F., SKUPIN S., GARDINER S.A., HUGHES I.G., Creating complex optical longitudinal polarization structures, Physical Review Letters 120(16), 2018, article 163903, DOI:10.1103/PhysRevLett.120.163903.
  • [13] LIU S., QI S., ZHANG Y., LI P., WU D., HAN L., ZHAO J., Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude, Photonics Research 6(4), 2018, pp. 228–233, DOI:10.1364/PRJ.6.000228.
  • [14] DREVINSKAS R., ZHANG Y., BERESNA M., GECEVICIUS M., KAZANSKII A.G., SVIRKO Y.P., KAZANSKY P.G., Laser material processing with tightly focused cylindrical vector beams, Applied Physics Letters 108(22), 2016, article 221107, DOI:10.1063/1.4953455.
  • [15] TANG M., ZHAO D., LI X., LI H., Focusing properties of radially polarized multi-cosine Gaussian correlated Schell-model beams, Optics Communications 396, 2017, pp. 249–256, DOI:10.1016/j.optcom.2017.03.063.
  • [16] ZHANG P., LI T., ZHU J., ZHU X., YANG S., WANG Y., YIN X., ZHANG X., Generation of acoustic self-bending and bottle beams by phase engineering, Nature Communications 5, 2014, article 4316, DOI:10.1038/ncomms5316.
  • [17] EPSTEIN I., ARIE A., Dynamic generation of plasmonic bottle-beams with controlled shape, Optics Letters 39(11), 2014, pp. 3165–3168, DOI:10.1364/OL.39.003165.
  • [18] XU H., ZHANG Z., QU J., HUANG W., The tight focusing properties of Laguerre–Gaussian correlated Schell-modle beams, Journal of Modern Optics 63(15), 2016, pp. 1429–1437, DOI:10.1080/09500340.2016.1151565.
  • [19] LIU S., YOU S., FANG Y., WANG Y., KUANG C., LIU X., Effects of polarization and phase modulation on the focal spot in 4Pi microscopy, Journal of Modern Optics 63(12), 2016, pp. 1145–1157, DOI:10.1080/09500340.2015.1129077.
  • [20] ZHANG Z., XU H., QU J., HUANG W., Radiation forces of highly focused radially polarized hollow sinh-Gaussian beams on a Rayleigh metallic particle, Journal of Modern Optics 62(9), 2015, pp. 754–760, DOI:10.1080/09500340.2015.1005188.
  • [21] SANTARSIERO M., MARTÍNEZ-HERRERO R., MALUENDA D., DE SANDE J.C.G., PIQUERO G., GORI F., Partially coherent sources with circular coherence, Optics Letters 42(8), 2017, pp. 1512–1515, DOI:10.1364/OL.42.001512.
  • [22] SANTARSIERO M., MARTÍNEZ-HERRERO R., MALUENDA D., DE SANDE J.C.G., PIQUERO G., GORI F., Synthesis of circularly coherent sources, Optics Letters 42(20), 2017, pp. 4115–4118, DOI:10.1364/OL.42.004115.
  • [23] DING C., KOIVUROVA M., TURUNEN J., PAN L., Self-focusing of a partially coherent beam with circular coherence, Journal of the Optical Society of America A 34(8), 2017, pp. 1441–1447, DOI:10.1364/JOSAA.34.001441.
  • [24] LIN H., ZHOU X., CHEN Z., SASAKI O., LI Y., PU J., Tight focusing properties of a circular partially coherent Gaussian beam, Journal of the Optical Society of America A 35(12), 2018, pp. 1974–1980, DOI:10.1364/JOSAA.35.001974.
  • [25] RICHARDS B., WOLF E., Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system, Proceedings of the Royal Society A 253(1274), 1959, pp. 358–379, DOI:10.1098/rspa.1959.0200.
  • [26] GU M., Advanced Optical Imaging Theory, Springer, Heidelberg, 1999.
  • [27] LINDFORS K., SETÄLÄ T., KAIVOLA M., FRIBERG A.T., Degree of polarization in tightly focused optical fields, Journal of the Optical Society of America A 22(3), 2005, pp. 561–568, DOI:10.1364/JOSAA.22.000561.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf1561ef-ef77-4a5f-8260-d44178408efc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.