PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Influence of winding configuration on properties of the multichannel permanent magnet brushless generator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to enhance operational reliability, modifications to the design of machine windings are necessary. One of the methods of improving machine operational reliability is adapting the windings to accommodate multichannel operation. This paper presents the design and construction of a prototype multi-channel brushless generator with surfacemounted permanent magnets (MCBLPMG SPMs). It also discusses the findings of a research project aimed at examining the impact of different winding configurations on the properties of multichannel operation in the MCBLPMG SPM. The quad-channel solution allows for the implementation of three varying winding configurations. A mathematical model of the three-phase MCBLPMG was developed for the purpose of analysis. The configurations differ in terms of the placement of the individual phases within the channels. A series of numerical tests were conducted on the selected configurations. Furthermore, the results of laboratory tests are presented. The configurations analysed in single-channel operation (SCO) showed no effect on generator efficiency. However, certain configurations may induce asymmetric operation, depending on their design.
Rocznik
Strony
321--340
Opis fizyczny
Bibliogr. 40 poz., fot., rys., wykr., wz.
Twórcy
  • Faculty of Electrical and Computer Engineering Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Faculty of Electrical and Computer Engineering Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • Faculty of Electrical and Computer Engineering Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • [1] Boldea I., Electric generators and motors: An overview, CES Transactions on Electrical Machines and Systems, vol. 4, no. 1, pp. 3–14 (2017), DOI: 10.23919/TEMS.2017.7911104.
  • [2] He C., Wu T., Analysis and design of surface permanent magnet synchronous motor and generator, CES Transactions on Electrical Machines and Systems, vol. 3, no. 1, pp. 94–100 (2019), DOI: 10.30941/CESTEMS.2019.00013.
  • [3] Gramaticov P., Electric motor-generators for unmanned aerial vehicles, Aerospace Research in Bulgaria, vol. 29 (2017), DOI: 10.3897/arb.v30.e10.
  • [4] Wang B., Vakil G., Liu Y., Yang T., Zhang Z., Gerada C., Optimization and Analysis of a High Power Density and Fault Tolerant Starter–Generator for Aircraft Application, Energies, vol. 14, no. 1 (2021), DOI: 10.3390/en14010113.
  • [5] Zhang Z., Huang J., Jiang Y., Geng W., Xu Y., Overview and analysis of PM starter/generator for aircraft electrical power systems, CES Transactions on Electrical Machines and Systems, vol. 1, no. 2, pp. 117–131 (2017), DOI: 10.23919/TEMS.2017.7961293.
  • [6] Wang B., Vakil G., Liu Y., Yang T., Zhang Z., Gerada C., Optimization and Analysis of a High Power Density and Fault Tolerant Starter–Generator for Aircraft Application, Energies, vol. 14, no. 1 (2021), DOI: 10.3390/en14010113.
  • [7] Kumar R.R., Kumari A., Dutta S., Kumar K., Design and Characteristic Evaluation of a Novel Dual Rotor Multi-layer Magnetic Pole Five-Phase Permanent Magnet Synchronous Generator for Marine Power Application, IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES) (2020), DOI: 10.1109/PEDES49360.2020.9379624.
  • [8] Jiang X., Zhang L., Li F., Zhao Z., Design and Analysis of a Highly Reliable Permanent Magnet Synchronous Machine for Flywheel Energy Storage, Machines, vol. 12, no. 9 (2024), DOI: 10.3390/machines12090655.
  • [9] Chung D.-W., You Y.-M., Cogging Torque Reduction in Permanent-Magnet Brushless Generators for Small Wind Turbines, Journal of Magnetics, vol. 20, pp. 176–185 (2015), DOI: 10.4283/JMAG.2015.20.2.176.
  • [10] Gwóźdź M., Krystykowiak M., Ciepliński Ł., Strzelecki R., A Wind Energy Conversion System Based on a Generator with Modulated Magnetic Flux, Energies, vol. 13, no. 12 (2020), DOI: 10.3390/en13123285.
  • [11] Ullah W., Khan F., Hussain S., A Novel Dual Rotor Permanent Magnet Flux Switching Generator for Counter Rotating Wind Turbine Applications, IEEE Access, vol. 10, pp. 16456–16467 (2022), DOI: 10.1109/ACCESS.2022.3149895.
  • [12] Hao L., Yakai S., Chunlan B., Guofeng H., Xiaoju Y., A dual-stator brushless doubly-fed generator for wind power application, Archives of Electrical Engineering, vol. 72, no. 4, pp. 1073–1087 (2023), DOI: 10.24425/aee.2023.147427.
  • [13] Levi E., Multiphase electric machines for variable-speed applications, IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 1893–1909 (2008), DOI: 10.1109/TIE.2008.918488.
  • [14] Levi E., Barrero F., Duran M.J., Multiphase machines and drives – Revisited, IEEE Transactions on Industrial Electronics, vol. 63, iss. 1, pp. 429–432 (2016), DOI: 10.1109/TIE.2015.2493510.
  • [15] Yepes A.G., Lopez O., Gonzales-Prieto I., Duran M.J., Doval-Gandoy J., A Comprehensive Survey on Fault Tolerance in Multiphase AC Drives, Part 1: General Overview Considering Multiple Fault Types, Machines, vol. 10, no. 3 (2022), DOI: 10.3390/machines10030208.
  • [16] Parsa L., Toliyat H.A., Multi-phase permanent magnet motor drives, 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference (2003), DOI: 10.1109/IAS.2003.1257532.
  • [17] Gonzalez-Prieto I., Duran M.J., Garcia-Entrambasaguas P., Bermudez M., Field-Oriented Control of Multiphase Drives with Passive Fault Tolerance, IEEE Transactions on Industrial Electronics, vol. 67, iss. 9, pp. 7228–7238 (2020), DOI: 10.1109/TIE.2019.2944056.
  • [18] Iftikar M.H., Byoung-Gun P., Ji-Won K., Design and Analysis of a Five-Phase Permanent-Magnet Synchronous Motor for Fault-Tolerant Drive, Energies, vol. 14, no. 2 (2021), DOI: 10.3390/en14020514.
  • [19] Huang C., Zhou L., Cao Z., Yao G., Fault-Tolerant Control Strategy with Asymmetric Phase Currents for Single to Four-Phase Open-Circuit Faults of Six-Phase PMSM, Energies, vol. 14, no. 11 (2021), DOI: 10.3390/en14113163.
  • [20] Fireţeanu V., Dumitru C., Finite Element Analysis of Multiphase Permanent Magnet Synchronous Motors with the Same Stators of Analogue 3-phase, 5-phase, 7-phase and 9-phase Induction Motors, International Conference on Applied and Theoretical Electricity (ICATE) (2021), DOI: 10.1109/ICATE49685.2021.9465021.
  • [21] Darijevic M., Jones M., Dordevic O., Levi E., Decoupled PWM Control of a Dual-Inverter Four-Level Five-Phase Drive, IEEE Transactions on Power Electronics, vol. 32, iss. 5, pp. 3719–3730 (2017), DOI: 10.1109/TPEL.2016.2582703.
  • [22] Nekoubin A., Soltani J., Dowlatshan M., Multi-objective design optimization of five-phase fractional-slot concentrated-winding surface-mounted permanent-magnet machine, Archives of Electrical Engineering, vol. 69, no. 4, pp. 873–889 (2020), DOI: 10.24425/aee.2020.134636.
  • [23] Akay A., Lefley P., Kansara M., Open-Circuit Fault-Tolerant Control for a Five-Phase Permanent Magnet Synchronous Machine Drive, 7th International Conference on Electrical and Electronics Engineering (ICEEE) (2020), DOI: 10.1109/ICEEE49618.2020.9102486.
  • [24] Zhao J., Lu Z., Han Q., Wang L., Design and Analysis of a Novel Six-Phase Axial Switched-Flux Permanent Magnet Machine with Different Winding Configuration, IEEE Transactions on Magnetics, vol. 59 (2023), DOI: 10.1109/TMAG.2023.3287558.
  • [25] Zhao J., Xie W., Fault-Tolerant Control Strategy of Five-Phase Permanent Magnet Synchronous Generator, 6th International Conference on Electrical Engineering and Green Energy (CEEGE) (2023), DOI: 10.1109/CEEGE58447.2023.10246742.
  • [26] Chukwuemeka C.A., Performance comparison of double stator permanent magnet machines, Archives of Electrical Engineering, vol. 71, no. 4, pp. 829–850 (2022), DOI: 10.24425/aee.2022.142111.
  • [27] Rubino S., Dordevic O., Bojoi R., Levi E., Modular Vector Control of Multi-Three-Phase Permanent Magnet Synchronous Motors, IEEE Transactions on Industrial Electronics, vol. 68, iss. 10 (2021), DOI: 10.1109/TIE.2020.3026271.
  • [28] Shchur I., Jancarczyk D., Electromagnetic Torque Ripple in Multiple Three-Phase Brushless DC Motors for Electric Vehicles, Electronics, vol. 10, no. 24 (2021), DOI: 10.3390/electronics10243097.
  • [29] Wang W., Zhang J., Cheng M., Li S., Fault-Tolerant Control of Dual Three-Phase Permanent-Magnet Synchronous Machine Drives Under Open-Phase Faults, IEEE Transactions on Power Electronics, vol. 32, iss. 3, pp. 2052–2063 (2017), DOI: 10.1109/TPEL.2016.2559498.
  • [30] Chen Q., Xu D., Xu L., Wang J., Lin Z., Zhu X., Fault-Tolerant Operation of a Novel Dual-Channel Switched Reluctance Motor Using Two 3-Phase Standard Inverters, IEEE Transactions on Applied Superconductivity, vol. 28, no. 3 (2018), DOI: 10.1109/TASC.2018.2799838.
  • [31] Ding W., Comparative Study on Dual-Channel Switched Reluctance Generator Performances Under Single- and Dual-Channel Operation Modes, IEEE Transactions on Energy Conversion, vol. 27, no. 3, pp. 680–688 (2012), DOI: 10.1109/TEC.2012.2194497.
  • [32] Wang Z., Liu B., Guan L., Zhang Y., Cheng M., Zhang B., Xu L., A Dual-Channel Magnetically Integrated EV Chargers Based on Double-Stator-Winding Permanent-Magnet Synchronous Machines, IEEE Transactions on Industry Applications, vol. 55, no. 2, pp. 1941–1953 (2019), DOI: 10.1109/TIA.2018.2879869.
  • [33] Korkosz M., Sztajmec E., Prokop J., Electromagnetic Performance Analysis of a Multichannel Permanent Magnet Synchronous Generator, Energies, vol. 16, no. 23 (2023), DOI: 10.3390/en16237816.
  • [34] Młot A., Korkosz M., Lechowicz A., Podhajecki J., Rawicki S., Electromagnetic analysis, efficiency map and thermal analysis of an 80-kW IPM motor with distributed and concentrated winding for electric vehicle applications, Archives of Electrical Engineering, vol. 71, no. 4, pp. 981–1002 (2022), DOI: 10.24425/aee.2022.142120.
  • [35] Roth C., Dakaju G., Gerold J., Greifelt A., Gerling D., Distributed Windings with Flux Barriers Applied to PM Wind Generators, 25th International Conference on Electrical Machines and Systems (ICEMS) (2022), DOI: 10.1109/ICEMS56177.2022.9983167.
  • [36] Qio H., Zhang Y., Yang C., Yi R., Performance analysis and comparison of PMSM with concentrated winding and distributed winding, Archives of Electrical Engineering, vol. 69, no. 2, pp. 303–317 (2020), DOI: 10.24425/aee.2020.133027.
  • [37] Yan Z., Si J., Nie R., Cheng Z., Dong L., Li Z., Comparative Analysis of Tubular Permanent Magnet Linear Generator with Equidirectional Toroidal Windings and Conventional Toroidal Windings, IEEE Transactions on Industry Applications, vol. 58, iss. 4, pp. 4614–4624 (2022), DOI: 10.1109/TIA.2022.3172238.
  • [38] Erd N., Binder A., Concentrated Windings for Wind Generators with Solid Rotor Iron and Redundant Feeding, International Conference on Electrical Machines (ICEM) (2020), DOI: 10.1109/ICEM49940.2020.9270688.
  • [39] Diana M., Lundmark S.T., Thiringer T., High Voltage Direct Drive Generators with Multiphase Single Layer Fractional Slot Concentrated Windings, International Conference on Electrical Machines (ICEM) (2020), DOI: 10.1109/ICEM49940.2020.9270963.
  • [40] Korkosz M., Krzywdzińska-Kornak K., Parfianowicz K., Prokop J., Shchur I., Design and Analysis of the Characteristics of a Brushless Permanent Magnet Motor for Critical Drive, International Conference on Electrical Drives and Power Electronics (EDPE) (2023), DOI: 10.1109/EDPE58625.2023.10274060.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf114dd7-5ff1-4f31-aacc-3ea95cdd8de8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.