PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Knowledge Reduction in Crisply Generated Fuzzy Concept Lattices

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Knowledge reduction is a basic issue in knowledge representation and data mining. Although various methods have been developed to reduce the size of classical formal contexts, the reduction of formal fuzzy contexts based on fuzzy lattices remains a difficult problem owing to its complicated derivation operators. To address this problem, this paper proposes a method of knowledge reduction by reducing attributes in a formal fuzzy context based on the crisply generated fuzzy concept lattice. Employing the proposed approach, attributes which are non-essential to the structure of the crisply generated fuzzy concept lattice are removed. Discernibility matrix and Boolean function are employed to compute the attribute reducts of the formal fuzzy contexts, by which all the attribute reducts of the formal fuzzy contexts are determined without changing the structure of the lattice. Further, all the attributes are classified into three types by their significance in constructing the crisply generated fuzzy concept lattice. The characteristics of these types of attributes are also analyzed. Finally, the proposed method is used to conduct knowledge reduction in the variable threshold concept lattices, which is a complement to the existing knowledge reduction methods.
Wydawca
Rocznik
Strony
307--335
Opis fizyczny
Bibliogr. 53 poz., tab.
Twórcy
autor
  • School of Information Science and Technology Southwest Jiaotong University Chengdu 610031, P. R. China
  • Chongqing Key Laboratory of Computational Intelligence Chongqing University of Posts and Telecommunications Chongqing 400065, P. R. China
autor
  • School of Information Science and Technology Southwest Jiaotong University Chengdu 610031, P. R. China
  • Chongqing Key Laboratory of Computational Intelligence Chongqing University of Posts and Telecommunications Chongqing 400065, P. R. China
Bibliografia
  • [1] Kumar, C.A., Srinivas, S.: Concept lattice reduction using fuzzy K-Means clustering, Expert systems with applications, 37(3), 2010, 2696–2704.
  • [2] Bĕlohlávek, R.: Lattices generated by binary fuzzy relations, Int. Conf. on Fuzzy Set Theory and Applications, 1998, 11.
  • [3] Bĕlohlávek, R.: Fuzzy galois connections, Mathematical Logic Quarterly, 45(4), 1999, 497–504.
  • [4] Bĕlohlávek, R.: Fuzzy closure operators, Journal of mathematical analysis and applications, 262(2), 2001, 473–489.
  • [5] Bĕlohlávek, R.: A note on variable threshold concept lattices: threshold-based operators are reducible to classical concept-forming operators, Information Sciences, 177(15), 2007, 3186–3191.
  • [6] Bĕlohlávek, R., Sklenáˇr, V., Zacpal, J.: Crisply generated fuzzy concepts, Formal Concept Analysis, Springer, 2005, 269–284.
  • [7] Bĕlohlávek, R., Vychodil, V.: Reducing the size of fuzzy concept lattices by hedges, The 14th IEEE International Conference on Fuzzy Systems, IEEE, 2005, 663–668.
  • [8] Bĕlohlávek, R., Vychodil, V.: What is a fuzzy concept lattice, Proceedings of International Conference on Concept Lattices and their Applications, Springer 5, 2005, 34–45.
  • [9] Beydoun, G.: Formal concept analysis for an e-learning semantic web, Expert Systems with Applications, 36(8), 2009, 10952–10961.
  • [10] Carpineto, C., Romano, G.: Exploiting the potential of concept lattices for information retrieval with CREDO., J. UCS, 10(8), 2004, 985–1013.
  • [11] Cole, R., Eklund, P., Stumme, G.: Document retrieval for e-mail search and discovery using formal concept analysis, Applied artificial intelligence, 17(3), 2003, 257–280.
  • [12] Davey, B. A., Priestley, H. A.: Introduction to lattices and order, Cambridge university press, 2002.
  • [13] Du, Y. J., Li, H. M.: Strategy for mining association rules for web pages based on formal concept analysis, Applied Soft Computing, 10(3), 2010, 772–783.
  • [14] Düntsch, I., Gediga, G.: Modal-style operators in qualitative data analysis, Proceedings of the 2002 IEEE International Conference on Data Mining, IEEE, 2002, 155–162.
  • [15] Elloumi, S., Jaam, J., Hasnah, A., Jaoua, A., Nafkha, I.: A multi-level conceptual data reduction approach based on the Lukasiewicz implication, Information Sciences, 163(4), 2004, 253–262.
  • [16] Endres, D.M., Földiák, P., Priss, U.: An application of formal concept analysis to semantic neural decoding, Annals of Mathematics and Artificial Intelligence, 57(3-4), 2009, 233–248.
  • [17] Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, vol. 284, Springer Berlin, 1999.
  • [18] Georgescu, G., Popescu, A.: Non-dual fuzzy connections, Archive for Mathematical Logic, 43(8), 2004, 1009–1039.
  • [19] Guo, L. K., Huang, F. P., Li, Q. G., Zhang, G. Q.: Power contexts and their concept lattices, Discrete Mathematics, 311(18), 2011, 2049–2063.
  • [20] Jaoua, A., Elloumi, S.: Galois connection, formal concepts and Galois lattice in real relations: application in a real classifier, Journal of Systems and Software, 60(2), 2002, 149–163.
  • [21] Kaytoue, M., Kuznetsov, S. O., Napoli, A., Duplessis, S.: Mining gene expression data with pattern structures in formal concept analysis, Information Sciences, 181(10), 2011, 1989–2001.
  • [22] Krajči, S.: Cluster based efficient generation of fuzzy concepts, Neural Network World, 13(5), 2003, 521–530.
  • [23] Kumar, C.A.: Knowledge discovery in data using formal concept analysis and random projections, International Journal of Applied Mathematics and Computer Science, 21(4), 2011, 745–756.
  • [24] Li, J. H., Mei, C. L., Lv, Y. J.: A heuristic knowledge-reduction method for decision formal contexts, Computers & Mathematics with Applications, 61(4), 2011, 1096–1106.
  • [25] Li, J. H.,Mei, C. L., Lv, Y. J.: Knowledge reduction in decision formal contexts, Knowledge-Based Systems, 24(5), 2011, 709–715.
  • [26] Li, L. F., Zhang, J. K.: Attribute reduction in fuzzy concept lattices based on the T implication, Knowledge-Based Systems, 23(6), 2010, 497–503.
  • [27] Li, L. J., Mi, J. S., Xie, B.: Attribute reduction based on maximal rules in decision formal context, International Journal of Computational Intelligence Systems, 7(6), 2014, 1044–1053.
  • [28] Li, M. Z., Mi, J. S.: The strong direct product of formal contexts, Information Sciences, 226, 2013, 47–67.
  • [29] Li, T. J., Li,M. Z., Gao, Y.: Attribute reductionof concept lattice based on irreducible element, International Journal of Wavelets, Multiresolution and Information Processing, 11(06), 2013.
  • [30] Li, T. J., Wu, W. Z.: Attribute reduction in formal contexts: a covering rough set approach, Fundamenta Informaticae, 111(1), 2011, 15–32.
  • [31] Liu, M., Shao,M., Zhang,W., Wu, C.: Reduction method for concept lattices based on rough set theory and its application, Computers & Mathematics with Applications, 53(9), 2007, 1390–1410.
  • [32] Medina, J., Ojeda-Aciego, M.: Multi-adjoint t-concept lattices, Information Sciences, 180(5), 2010, 712–725.
  • [33] Mi, J. S., Leung, Y., Wu, W. Z.: Approaches to attribute reduction in concept lattices induced by axialities, Knowledge-Based Systems, 23(6), 2010, 504–511.
  • [34] Pei, D., Mi, J. S.: Attribute reduction in decision formal context based on homomorphism, International Journal of Machine Learning and Cybernetics, 2(4), 2011, 289–293.
  • [35] Poelmans, J., Ignatov, D. I., Kuznetsov, S. O., Dedene, G.: Formal concept analysis in knowledge processing: A survey on applications, Expert Systems with Applications, 40(16), 2013, 6538 – 6560.
  • [36] Pollandt, S.: Fuzzy begriffe, 1997.
  • [37] Popescu, A.: A general approach to fuzzy concepts, Mathematical Logic Quarterly, 50(3), 2004, 265–280.
  • [38] Poshyvanyk, D., Marcus, A.: Combining formal concept analysis with information retrieval for concept location in source code, 15th IEEE International Conference on Program Comprehension, IEEE, 2007.
  • [39] Priss, U.: Formal concept analysis in information science, ARIST, 40(1), 2006, 521–543.
  • [40] Shao, M. W., Leung, Y.: Relations between granular reduct and dominance reduct in formal contexts, Knowledge-Based Systems, 65, 2014, 1–11.
  • [41] Shao, M. W., Yang, H. Z., Wu, W. Z.: Knowledge reduction in formal fuzzy contexts, Knowledge-Based Systems, 73, 2015, 265–275.
  • [42] Singh, P. K., Cherukuri, A. K., Li, J. H.: Concepts reduction in formal concept analysis with fuzzy setting using Shannon entropy, International Journal of Machine Learning and Cybernetics, 1–11.
  • [43] Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems, in: Intelligent Decision Support, Springer, 1992, 331–362.
  • [44] Stumme, G., Wille, R., Wille, U.: Conceptual knowledge discovery in databases using formal concept analysis methods, Springer, 1998.
  • [45] Tilley, T., Cole, R., Becker, P., Eklund, P.: A survey of formal concept analysis support for software engineering activities, in: Formal concept analysis, Springer, 2005, 250–271.
  • [46] Valtchev, P., Missaoui, R., Lebrun, P.: A partition-based approach towards constructing Galois (concept) lattices, Discrete Mathematics, 256(3), 2002, 801–829.
  • [47] Wang, X., Zhang, W. X.: Knowledge reduction in concept lattices based on irreducible elements, in: Transactions on Computational Science V, Springer, 2009, 128–142.
  • [48] Wille, R.: Restructuring lattice theory: an approach based on hierachies of concepts, in: Ordered sets (I. Rival, Ed.), Reidel, Dordrecht-Boston, 1982, 314–339.
  • [49] Wu, W. Z., Leung, Y., Mi, J. S.: Granular computing and knowledge reduction in formal contexts, IEEE Transactions on Knowledge and Data Engineering, 21(10), 2009, 1461–1474.
  • [50] Yahia, S. B., Jaoua, A.: Discovering knowledge from fuzzy concept lattice, in: Data mining and computational intelligence, Springer, 2001, 167–190.
  • [51] Yao, Y. Y.: Concept lattices in rough set theory, IEEE Annual Meeting of the North American Fuzzy Information Processing Society, 2, IEEE, 2004, 796–801.
  • [52] Zhang, W. X., Ma, J. M., Fan, S. Q.: Variable threshold concept lattices, Information Sciences, 177(22), 2007, 4883–4892.
  • [53] Zhang,W. X.,Wei, L., Qi, J. J.: Attribute reduction theory and approach to concept lattice, Science in China Series F: Information Sciences, 48(6), 2005, 713–726.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf10be9c-b146-40f9-97cc-bb621129b0d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.