PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Electropolishing Characteristics of 316L Stainless Steel Tube in Contaminated Electrolyte

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the electropolishing process, the polishing quality of the metal surface varies according to the contamination of the electrolyte. In this study, the electrolyte was evaluated according to the usage time, and the effect of each factor on electropolishing was investigated. As the electrolyte is contaminated, the concentration of metal ions in the electrolyte increases and the ion conductivity decreases. In addition, the pH and specific gravity of the electrolyte increase due to the metal sludge formed as the metal ion concentration increases. When the electrolyte usage time was more than 5 days, many scratches remained on the surface of 316L stainless steel, and relatively high surface roughness was measured. The surface roughness improvement rate compared to the initial specimen was 30% for the unused electrolyte, 26% on the 3rd day, 19% on the 5th day, and 17.5% on the 13th day. Since the low current density due to electrolyte contamination causes a decrease in polishing efficiency, initial scratches on the metal surface still exist on the polished surface. Therefore, it is necessary to manage the electrolyte to maintain the quality of electropolishing.
Twórcy
  • Advanced Material & Processing Center (Institute for Advanced Engineering, Yongin, Korea)
  • Advanced Material & Processing Center (Institute for Advanced Engineering, Yongin, Korea)
  • Division of Materials Science and Engineering, Hanyang University, Seoul, South Korea
autor
  • Advanced Material & Processing Center (Institute for Advanced Engineering, Yongin, Korea)
Bibliografia
  • [1] Z. ur Rahman, K.M. Deen, L. Cano, W. Haider, Appl. Surf. Sci, 410, 432-444 (2017).
  • [2] S. Zaki, N. Zhang, M.D. Gilchrist, Micromachines 13, 468 (2022).
  • [3] R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R, 50 (1-2), 1-78 (2005).
  • [4] L. Ponto, M. Datta, D. Landolt, Surf. Coat. Technol. 30, 265-276 (1987).
  • [5] C.H. Hwang, H.M. Lee, J.S. Oh, D.H. Hwang, Y.S. Hwang, J.W. Lee, J. M. Choi, J.S. Park, J. Powder Mater. 28 (5), 396-402 (2021).
  • [6] G. Yang, B. Wang, K. Tawfiq, H. Wei, S. Zhou, G. Chen, Surf. Eng. 33, 149-166 (2017).
  • [7] A.P. Davis, C. Bernstein, P.M. Gietka, Proc. of 27th Mid-Atlantic Industrial Waste Confernce: Hazardous and Industral Wastes. 62-71 (1995).
  • [8] F. Eozénou, S. Berry, C. Antoine, Y. Gasser, J.-P. Charrier, B. Malki, Phys. Rev. Accel. Beams. 13, 083501 (2010).
  • [9] F. Eozénou, M. Bruchon, J. Gantier, This Conference (2007).
  • [10] J.W. Mwangi, L.T. Nguyen, V.D. Bui, T. Berger, J. Manuf. Process. 38, 355-369 (2019).
  • [11] W. Han, F. Fang, J. Manuf. Sci. Eng. 141, 101015 (2019).
  • [12] S. Charazińska, P. Lochyński, J. Water. Process. Eng. 42, 102169 (2021).
  • [13] A.M. Awad, N.A. Abdel Ghany, T.M. Dahy, Appl. Surf. Sci. 256, 4370-4375 (2010).
  • [14] H. Tian, S.G. Corcoran, C.E. Reece, M.J. Kelley, J. Electrochem. Soc. 155, D563 (2008).
  • [15] P. Lochyński, P. Wiercik, S. Charazińska, M. Ostrowski, J. Environ. Prot. Sci. 47, 18-29 (2021).
  • [16] S.J. Lee, Y. H. Chen, J.C. Hung, Int. J. Electrochem. Sci. 7, 12495-12506 (2012).
  • [17] M. Baumgärtner, H. Kaesche, Corrosion Science 29, 363-378 (1989).
Uwagi
This research was supported by the Technology Innovation Program (20009937, Development of UHP (ultra-high-purity) stainless steel components for semiconductor process and field evaluation technology) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf0df154-4bc9-4bf4-a840-6287e30aa3d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.