PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Infiltration Behavior Of Mechanical Alloyed 75 wt% Cu-25 wt% WC Powders Into Porous WC Compacts

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Proces infiltracji porowatych kształtek WC z wykorzystaniem proszku 75% Cu-25 WC wytworzonego metodą mechanicznego stopowania
Języki publikacji
EN
Abstrakty
EN
In this work infiltration behavior of mechanical alloyed 75 wt% Cu – 25 wt% WC powders into porous WC compacts were studied. Owing to their ductile nature, initial Cu powders were directly added to mechanical alloying batch. On the other hand initial WC powders were high energy milled prior to mechanical alloying. Contact infiltration method was selected for densification and compacts prepared from processed powders were infiltrated into porous WC bodies. After infiltration, samples were characterized via X-Ray diffraction studies and microstructural evaluation of the samples was carried out via scanning electron microscopy observations. Based on the lack of solubility between WC and Cu it was possible to keep fine WC particles in Cu melt since solution reprecipitation controlled densification is hindered. Also microstructural characterizations via scanning electron microscopy confirmed that the transport of fine WC fraction from infiltrant to porous WC skeleton can be carried out via Cu melt flow during infiltration.
Twórcy
autor
  • Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
autor
  • Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
Bibliografia
  • [1] A. Chrysanthou, G. Erbaccio, Production of copper-matrix composites by in situ processing, Journal of Materials Science 30, 6339-6344 (1995).
  • [2] Y. Shinoda, Y. Yanagisawa, T. Akatsu, F. Wakai, H. Fujii, Development of creep-resistant tungsten carbide copper cemented carbide, Materials Transactions 50, 1250-1254 (2009).
  • [3] P. K. Deshpande, R. Y. Lin, Wear resistance of WC particle reinforced copper matrix composites and the effect of porosity, Materials Science and Engineering A - Structural Materials Properties Microstructure and Processing 418, 137-145 (2006).
  • [4] G. W. Samsonow, W. I. Jakowlew, Influence of additıons of transitıon metals on sintering behaviour of tungsten, Zeitschrift Für Metallkunde 62, 621 (1971).
  • [5] T. H. Ihn, S. W. Lee, S. K. Joo, Effect of transition-metal additıon on liquıd-phase sintering of W-Cu, Powder Metallurgy 37, 283-288 (1994).
  • [6] D. Wojcik-Grzybek, K. Frydman, P. Borkowski, The influence of the microstructure on the switching properties of Ag-C, Ag-WC-C and Ag-W-C contact materials, Archives of Metallurgy and Materials 58, 1059-1065 (2013).
  • [7] C. H. Leung, H. J. Kim, A comparison of Ag/W, Ag/WC, and Ag/Mo electrical contacts, IEEE Transactions on Components Hybrids and Manufacturing Technology 7, 69-75 (1984).
  • [8] A. Yamamoto, T. Kusano, T. Seki, T. Okutomi, Vaporization of carbon from Cu-WC contact during arc discharge in vacuum, International Symposium on Discharges and Electrical Insulation in Vacuum 18, 349-352 (1998).
  • [9] J. A. Rogers, Dispersion strengthened copper alloys with useful electrical and mechanical properties, Powder Metallurgy 20, 212-220 (1977).
  • [10] K. V. Sebastian, Properties of sintered and infiltrated tungsten – copper electrical contact material, International Journal of Powder Metallurgy and Powder Technology 17, 297-303 (1981).
  • [11] I. H. Moon, J. S. Lee, Activated sintering of tungsten-copper contact materials, Powder Metallurgy 22, 5-7 (1979).
  • [12] N. Q. Zhao, J. J. Li, X. J. Yang, Influence of the P/M process on the microstructure and properties of WC reinforced copper matrix composite, Journal of Materials Science 39, 4829-4834 (2004).
  • [13] J. Lezanski, W. Rutkowski, Infiltration of a liquid in sintered tungsten - 3 stages of infiltration, Powder Metallurgy International 19, 29-31 (1987).
  • [14] R. Deshpande, J. H. Li, R. Y. Lin, Infrared processed Cu composites reinforced with WC particles, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 429, 58-65 (2006).
  • [15] R. M. German, Liquid Phase Sintering; Plenum Press, New York 1985.
  • [16] R. J. Nelson, D. R. Milner, Liquid-flow densification in tungsten carbon-copper system, Powder Metallurgy 14, 39 (1971).
  • [17] M. Yusoff, R. Othman, Z. Hussain, Mechanical alloying and sintering of nanostructured tungsten carbide-reinforced copper composite and its characterization, Materials & Design 32, 3293-3298 (2011).
  • [18] Y. V. Baikalova, O. I. Lomovsky, Solid state synthesis of tungsten carbide in an inert copper matrix, Journal of Alloys and Compounds 297, 87-91 (2000).
  • [19] A. Şelte, The effects of mechanical alloying method on the densification properties of WC – Cu system which is produced by infiltration technique, M. S. Dissertation 2012, Istanbul Technical University, Istanbul, Turkey, (2012).
  • [20] A. A. Kern, A. A. Coelho, TOPAS 3 (BRUKER AXS), 2006, www.brukeraxs.com
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf0c849a-36f1-472c-8920-bd1106001294
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.