Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the context of today’s green development, it is the core task of the financial sector at all levels to enhance the utilisation of resources and to guide the high-quality development of industries, especially to channel funds originally gathered in high-pollution and energy-intensive industries to sectors with green and high-technology, to achieve the harmonious development of the economy and the resources and environment. This paper proposes a green financial text classification model based on machine learning. The model consists of four modules: the input module, the data analysis module, the data category module, and the classification module. Among them, the data analysis module and the data category module extract the data information of the input information and the green financial category information respectively, and the two types of information are finally fused by the attention mechanism to achieve the classification of green financial data in financial data. Extensive experiments are conducted on financial text datasets collected from the Internet to demonstrate the superiority of the proposed green financial text classification method.
Czasopismo
Rocznik
Tom
Strony
103--110
Opis fizyczny
Bibliogr. 16 poz., tab.
Twórcy
autor
- Zhongyuan Institute of Science and Technology, Zhengzhou 450000, China
- Henan Pivotal Port and Economy Research Centre, Zhengzhou 450000, China
Bibliografia
- [1] Wang YX. Research on influence of computer technology on industrial upgrading and cooperative evolution of environmental protection fiscal policy from green finance perspective. J Physics: Conf Ser. 2021;1744(4). DOI: 10.1088/1742-6596/1744/4/042104.
- [2] Han ZQ, Wen LN. Development and validation of a decision tree classification model for the essential hypertension based on serum protein biomarkers. Annals Translat Medicine. 2022;10(18):1-6. DOI: 10.21037/ATM-22-3901.
- [3] Wang HM, Li ZJ. An AdaBoost-based tree augmented naive Bayesian classifier for transient stability assessment of power systems. Proc Institution Mechanical Engineers. 2022;236(3):495–507. DOI: 10.1177/1748006X211047308.
- [4] Tang JY, Lin KY, Li L. Using domain adaptation for incremental SVM classification of drift data. Mathematics. 2022;10(19):3579. DOI: 10.3390/MATH10193579.
- [5] Kim YK, Kim HJ, Lee H, Chang JW. Privacy-preserving parallel kNN classification algorithm using index-based filtering in cloud computing. PLoS ONE. 2022;17(5):e0274981. DOI: 10.1371/JOURNAL.PONE.0267908.
- [6] Lewy D, Mańdziuk J. Training CNN classifiers solely on webly data. J Artificial Intelligence Soft Computing Res. 2023;13(1):75-92. DOI: 10.2478/JAISCR-2023-0005.
- [7] David MS, Renjith S. Comparison of word embeddings in text classification based on RNN and CNN. IOP Conf Ser: Materials Sci Eng. 2021;1187(1):012029. DOI: 10.1088/1757-899X/1187/1/012029.
- [8] Mundra S, Mittal N. FA-Net: fused attention-based network for Hindi English code-mixed offensive text classification. Social Network Analysis Mining. 2022;12(1):1-6. DOI: 10.1007/S13278-022-00929-1.
- [9] Rawat A, Wani MA, ElAffendi M, Imran AS, Kastrati Z, Daudpota SM. Drug adverse event detection using text-based convolutional neural networks (TextCNN) technique. Electronics. 2022;11(20):3336. DOI: 10.3390/ELECTRONICS11203336.
- [10] Ji XD, Li YL, Xia Y, Wang CW, Ansari F, Wu B, et al. LSTM approach for condition assessment of suspension bridges based on time-series deflection and temperature data. Adv Structural Eng. 2022;25(16):1-10. DOI: 10.1177/13694332221133604.
- [11] Abdul AI, Marina Y. An efficient hybrid LSTM-CNN and CNN-LSTM with GloVe for text multi-class sentiment classification in gender violence. Int J Adv Computer Sci Appl (IJACSA). 2022;13(9):1-11. DOI: 10.14569/IJACSA.2022.0130999.
- [12] Bae A, Kim W. Speaker verification employing combinations of self-attention mechanisms. Electronics. 2020;9(12):2201. DOI: 10.3390/ELECTRONICS9122201.
- [13] Huang WC, Tao ZQ, Huang XH, Xiong LY, Yu J. Hierarchical self-attention hybrid sparse networks for document classification. Mathematical Problems Eng. 2021:1-10. DOI: 10.1155/2021/5594895.
- [14] Peng HL, Tsu JF, Wei YM. Why attention? Analyze BiLSTM deficiency and its remedies in the case of NER. Proc AAAI Conf Artificial Intelligence. 2020;34(05):8236-44. DOI: 10.1609/aaai.v34i05.6338.
- [15] Wu CH. An empirical study on discussion and evaluation of green university. Ecol Chem Eng S. 2021;28(1):75-87. DOI: 10.2478/eces-2021-0007.
- [16] Wu CH, Tsai SB, Liu W, Shao XF, Sun R, Wacławek M. Eco-technology and eco-innovation for green sustainable growth. Ecol Chem Eng S. 2021;28(1):7-10. DOI: 10.2478/eces-2021-0001.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf07fade-bee5-49d2-a26a-2f47f8b11dfe