PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the properties of HAp micropowders after ion exchange process in silver nitrate solution

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bioceramic materials, such as hydroxyapatite (HAp), are characterized by high biocompatibility in the presence of tissues and body fluids without causing toxic or allergic reactions. Hydroxyapatite, due to its similarity to structures found in bones, is used both in the form of powders, e.g. as additives to bone cements, and implants coatings. However, this material is not characterized by antimicrobial properties, therefore attempts are made to improve its properties by introducing additional elements into the hydroxyapatite structure. Thanks to HAp’s high ion-exchange ability, silver can be introduced into its structure. The calcium ions present in the HAp structure can be easily replaced by silver ions to create a material endowed with high biocompatibility and antibacterial properties. The presented study is based on the analysis of the morphology of the modified powders via scanning electron microscopy (SEM), their chemical composition via X-ray energy dispersive spectroscopy (EDS) and chemical structure via X-ray diffraction (XRD) and Raman spectroscopy. The powders obtained through the ion exchange were mixtures of silver phosphates Ag3PO4 and HAp. The highest silver content was found in the sample modified with a 1M concentration of AgNO3 in the aqueous solution. It was also determined that the annealing of the obtained powders under vacuum at 800°C resulted in the formation of metallic silver and a change in the structure of HAp to β-TCP.
Rocznik
Strony
15--20
Opis fizyczny
Bibliogr. 45 poz., wykr., zdj.
Twórcy
  • Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
  • Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
  • Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
  • Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
  • Clinical Department of Orthopedic-Traumatic, Oncological and Reconstructive Surgery, St. Barbara Specialized Regional Hospital No. 5, Sosnowiec, Plac Medyków 1, 41-200 Sosnowiec, Poland
Bibliografia
  • [1] Ślósarczyk A., Potoczek M., Paszkiewicz Z., Zima A., et al.: Characteristics and biological evaluation of high-porosyapatite bioceramics. Ceramic Materials 62(2) (2010) 224-229.
  • [2] Sobczak-Kupiec A., Wzorek Z.: Właściwości fizykochemiczne ortofosforanów wapnia istotnych dla medycyny - TCP i HAp. Chemia. Czasopismo techniczne 107 (2010) 309-322.
  • [3] Kluess D., Bergschmidt P. Mittelmeier, W.: Ceramics for joint Replacement. Joint Replacement Technology, (2014) 152-166.
  • [4] Gremillard L., Chevalier J.: New Trends in Ceramics for Orthopedics. Encyclopedia of Materials: Technical Ceramics and Glasses 3 (2021) 493-500.
  • [5] Arcos D., Vallet-Regi M.: Substituted hydroxyapatite coatings of bone implants. Journal of Materials Chemistry B, 8(9) (2020) 1781-1800.
  • [6] Wang X., Yu Y., Ji L., et. al.: Calcium phosphate-based materials regulate osteoclast-mediated osseointegration. Bioactive Materials 6(12) (2021) 4517-4530.
  • [7] Święcicki Z.: Bioceramika dla ortopedii. Instytut Pods. Problemy Techniki PAN, Wyd. Spółdzielcze Sp. z o.o., Warsaw, 1992.
  • [8] Rujitanapanich S., Kumpapan P., Wanjanoi P.: Synthesis of Hydroxyapatite from Oyster Shell via Precipitation. Energy Procedia 56 (2014) 112-117.
  • [9] Szcześ A., Hołysz L., Chibowski E.: Synthesis of hydroxyapatite for biomedical applications, Advances in Colloid and Interface Science 249 (2017) 321-330.
  • [10] Gaoyu Ch., Xiaoyan Z., Chong W., Junfeng H., et al.: A postsynthetic ion exchange method for tunable doping of hydroxyapatite nanocrystals. RSC Advances, 7(89) (2017) 56537-56542.
  • [11] Hou J., Liu Y., Han Z., et al.: Silver-hydroxyapatite nanocomposites prepared by three sequential reaction steps in one pot and their bioactivities in vitro. Materials Science and Engineering C 120 (2021) 111655.
  • [12] Dubnika A., Loca D., Rudovica V., et al.: Functionalized silver doped hydroxyapatite scaffolds for controlled simultaneous silver ion and drug delivery. Ceramics International 47 (2017) 3698-3705.
  • [13] Šupová M.: Substituted hydroxyapatites for biomedical applications: A review, Ceramics International 41(8) (2015) 9203-9231.
  • [14] Chen W., Liu Y., Courtney H.S., Betteng M., Agrawal C.M., et al.: In vitro anti-bacterial and biological properties of magnetron co--sputtered silver-containing hydroxyapatite coating. Biomaterials 27(32) (2006) 5512-5517.
  • [15] Rai M., Yadav A., Gade A., et al.: Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances 27(1) (2009) 76-83.
  • [16] Lysakowska M., Denys P.: Antimicrobial uses of silver.Antimicrobial uses of silver. Ortop 4 Quarter, (2009) 408-417.
  • [17] Klasen H.J.: A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver, Burns 26(2) (2000) 131-138.
  • [18] Moiemen N.S., Shale E., Drysdale K.J., et al.: Acticoat dressings and major burns: Systemic silver absorption. Burns 37 (2011) 27-35.
  • [19] Bugla-Płoskońska G., Oleszkiewicz A.: Biological activity of silver and its application in medicine. Cosmos – Problems of Biological Sciences 56(1-2) (2007) 115-122.
  • [20] Yang J.Y., Huang C.Y., Chuang S.S., et al.: Case report: A clinical experience of treating exfoliative wounds using nanocrystalline silver-containing dressings (Acticoat). Burns 33 (2007) 793-797.
  • [21] Lansdown A.B.G.: Silver. I: its antibacterial properties and mechanism of action. Journal of Wound Care 11(4) (2013) 125.
  • [22] Petica A., Gavriliu S., Lungua M., et al.: Colloidal silver solutions with antimicrobial properties. Materials Science and Engineering: B 152 (2008) 22-27.
  • [23] Sandukas S., Yamamoto A., Rabiei A.: Osteoblast adhesion to functionally graded hydroxyapatite coatings doped with silver. J. Biomed. Mater. Res. 97(4) (2011) 490-497.
  • [24] Ratha I., Datta P., Balla V. K., et al.: Effect of doping in hydroxyapatite as coatings material on biomedical implants by plasma spraying method; A rewiew. Ceramics Internationals 47(4) (2021) 4426-4445.
  • [25] Ressler A., Žužić A., et al.: Ionic substituted hydroxyapatite for bone regeneration applications: A review. Open Ceramics 6 (2021) 100122.
  • [26] Lei Song, Yan-Feng, Xiao Lu Gan, et al.: The effect of antibacterial ingredients and coating microstructure on the antibacterial properties of plasma sprayed hydroxyapatite coatings. Surface and Coatings Technology 206(11-12) (2012) 2986-2990.
  • [27] Kolmas J., Piotrowska U., Kuras M., et al.: Effect of carbonate substitution on physicochemical and biological properties of silver containing hydroxyapatites. Materials Science and Engineering: C 74(1) (2017) 124-130.
  • [28] Cazalini E.M., Miyakawa W., Teodoro, G.R., et al.: Antimicrobial and anti-biofilm properties of polypropylene meshes coated with metal-containing DLC thin films. Journal of materials science. Materials in medicine 28(6) (2017) 97.
  • [29] Chen W., Oh S., Ong A.P., Oh N., et al.: Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process. The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 82(4) (2007) 899-906.
  • [30] Yajing Y., Xuejiao Z., Yong H., et al.: Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO2 nanotube composite coatings on titanium. Applied Surface Science 314(30) (2014) 348-357.
  • [31] Bensalema A., Kaan Kucukosman O., Raszkiewicz J.: Synthesis, characterization, bactericidal activity, and mechanical properties of hydroxyapatite nano powders impregnated with silver and zinc oxide nanoparticles (Ag-ZnO-Hap). Ceramics International 47(15) (2021) 21319-21324.
  • [32] Wahhab Abdulsada F., Ali Sabea Hammood: Characterization of corrosion and antibacterial resistance of hydroxyapatite/silver nano particles powder on 2507 duplex stainless steel. Materialstoday proceedings 42(5) (2021) 2301-2307.
  • [33] Zagorodni A.A.: Physico-chemical Description of Ion Exchange Processes. Ion Exchange Materials, Properties and Applications, Elsevier (2007) 169-198.
  • [34] De Trizio L., Manna L.: Forging Colloidal Nanostructures via Cation Exchange Reactions. 116(18) (2016) 1085210887.
  • [35] M.M.J. van Rijt, S.W. Nooteboom, et al.: Stability-limited ion-exchange of calcium with zinc in biomimetic hydroxyapatite. Materials & Design 207 (2021) 109846.
  • [36] Riaz M., Zia R., Ijaz A.: Synthesis of monophasic Ag doped hydroxyapatite and evaluation of antibacterial activity. Materials Science and Engineering: C 90(1) (2018) 308-313.
  • [37] Hong X., Wu X., Zhang Q., Xiao M.: Hydroxyapatite supported Ag3PO4 nanoparticles with higher visible light photocatalytic activity. Applied Surface Science 258(10) (2012) 4801-4805.
  • [38] Chai B., Jing L., Qian X.: Reduced Graphene Oxide Grafted Ag3PO4 Composites with Efficient Photocatalytic Activity under Visible-Light Irradiation, Ind. Eng. Chem. Res. 53 (2014) 8744-8752.
  • [39] Klinkaewnarong J., Swatsitang E., Masingboon Ch., Seraphin S., Maensiri S.: Synthesis and characterization of nanocrystalline HAp powders prepared by using aloe vera plant extracted solution. Current Applied Physics 10 (2010) 521-525.
  • [40] Silva C.C., Sombra A.S.B.: Raman spectroscopy measurements of hydroxyapatite obtained by mechanical alloying. Journal of Physics and Chemistry of Solids 65 (2004) 1031-1033.
  • [41] Koutsopoulos S.: Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. Journal of Biomedical Materials Research 62 (2002) 600-612.
  • [42] Hua T., Yanhui F., Shufang Ch., Siyu X., Guogang T.: Construction of Ag3PO4/Ag2MoO4 Z-scheme heterogeneous photocatalyst for the remediation of organic pollutants. Chinese Journal of Catalysis 38 (2017) 337-347.
  • [43] Penel G., Cau E., Delfosse C., Rey Ch., Hardouin P., Jeanfils J., et al.: Raman Microspectrometry Studies of Calcified Tissues and Related Biomaterials. Raman Studies of Calcium Phosphate Biomaterials. Dent. Med. Probl. 40(1) (2003) 37-43.
  • [44] Carrodeguas R.G., De Aza S.: α-Tricalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomaterialia 7 (2011) 3536-3546.
  • [45] Aruna S.T., Kulkarni S., Chakraborty M., et al.: A comparative study on the synthesis and properties of suspension and solution precursor plasma sprayed hydroxyapatite coatings. Ceramics International 43 (2017) 9715-9722.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf0756c6-d863-4a95-8cfc-f5ac0da04674
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.