PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vibration analysis of three-layered nanobeams based on nonlocal elasticity theory

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the first investigation on free vibration analysis of three-layered nanobeams with the shear effect incorporated in the mid-layer based on the nonlocal theory and both Euler Bernoulli and Timoshenko beams theories is presented. Hamilton’s formulation is applied to derive governing equations and edge conditions. In order to solve differential equations of motions and to determine natural frequencies of the proposed three-layered nanobeams with different boundary conditions, the generalized differential quadrature (GDQM) is used. The effect of the nanoscale parameter on the natural frequencies and deflection modes shapes of the three layered-nanobeams is discussed. It appears that the nonlocal effect is important for the natural frequencies of the nanobeams. The results can be pertinent to the design and application of MEMS and NEMS.
Rocznik
Strony
1299--1312
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • Laboratory of Mechanical Modeling and Production (LA2MP), National School of Engineers of Sfax, Tunisia
autor
  • Laboratory of Mechanical Modeling and Production (LA2MP), National School of Engineers of Sfax, Tunisia
autor
  • Laboratory of Mechanical Modeling and Production (LA2MP), National School of Engineers of Sfax, Tunisia
autor
  • Laboratory of Applied Mechanics and Engineering (LR-May-ENIT), National School of Engineers of Tunis, Tunisia
autor
  • Laboratory of Mechanical Modeling and Production (LA2MP), National School of Engineers of Sfax, Tunisia
Bibliografia
  • 1. Ansari R., Gholami R., 2016, Size-dependent nonlinear vibrations of first-order shear deformable magneto-electro-thermo elastic nanoplates based on the nonlocal elasticity theory, International Journal of Applied Mechanics, 8, 4, 1650053-1650086
  • 2. Bauer S., Pittrof A., Tsuchiya H., Schmuki P., 2011, Size-effects in TiO2 nanotubes: Diameter dependent anatase/rutile stabilization, Electrochemistry Communications, 6, 538-541
  • 3. Behera L., Chakraverty S., 2014, Free vibration of Euler and Timoshenko nanobeams using boundary characteristic orthogonal polynomials, Applied Nanoscience, 3, 347-358
  • 4. Eltaher M.A., Emam S.A., Mahmoud F.F., 2013, Static and stability analysis of nonlocal functionally graded nanobeams, Composite Structures, 96, 82-88
  • 5. Eringen A.C., 1972, Nonlocal polar elastic continua, International Journal of Engineering Science, 10, 1, 1-16
  • 6. Geim A.K., 2009, Graphene: Status and Prospects, Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Oxford Road M13 9PL, Manchester, UK, 324, 1-8
  • 7. He J.H., 1999, Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering, 178, 257-262
  • 8. Hosseini Kordkheili S.A., Sani H., 2013, Mechanical properties of double-layered graphene sheets, Computational Materials Science, 69, 335-343
  • 9. Hung E.S., Senturia S.D., 1999, Extending the travel range of analog-tuned electrostatic actuators, Journal of Microelectromechanics Systems, 8, 497-505
  • 10. Ke L.L., Wang Y.S., 2012, Thermoelectric-mechanical vibration of piezoelectric nanobeams based on nonlocal theory, Smart Materials and Structures, 21, 1-12
  • 11. Ke L.L., Wang Y.S., 2014, Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory, Physica E, 63, 52-61
  • 12. Koiter W.T., 1964, Couple-stresses in the theory of elasticity: I and II, Koninklijke Nederlandse Akademie van Wetenschappen (Royal Netherlands Academy of Arts and Sciences), 67, 17-44
  • 13. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P., 2003, Experiments and theory in strain gradient elasticity, Journal of Mechanics and Physics of Solids, 51, 1477-1508
  • 14. Li C., Lim C.W., Yu J.L., 2011, Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load, Smart Materials and Structures, 20
  • 15. Li X., Bhushan B., Takashima K., Baek C.W., Kim Y.K., 2003, Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques, Ultramicroscopy, 97, 481-494
  • 16. Lim C.W., 2010, On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection, Applied Mathematics and Mechanics, 1, 37-54
  • 17. Mindlin R.D., 1963, Influence of couple-stresses on stress concentrations, Experimental Mechanics, 3, 1-7
  • 18. Mindlin R.D., 1965, Second gradient of strain and surface-tension in linear elasticity, International Journal of Solids and Structures, 1, 217-238
  • 19. Moser Y., Gijs M.A.M., 2007, Miniaturized flexible temperature sensor, Journal of Microelectromechanical Systems, 16, 1349-1354
  • 20. Mousavi T., Bornassi S., Haddadpour H., 2013, The effect of small scale on the pull-in instability of nano-switches using DQM, International Journal of Solids and Structures, 50, 1193-1202
  • 21. Najar F., Nayfeh A.H., Abdel-Rahman E.M., Choura S., El-Borgi S., 2010, Global stability of microbeam-based electrostatic microactuators, Journal of Vibration and Control, 16, 721-748
  • 22. Nazemnezhad R., Hosseini-Hashemi S., 2014, Free vibration analysis of multi-layer graphene nanoribbons incorporating interlayer shear effect via molecular dynamics simulations and nonlocal elasticity, Physics Letters A, 44, 3225-3232
  • 23. Nazemnezhad R., Zare M., 2016, Nonlocal Reddy beam model for free vibration analysis of multilayer nanoribbons incorporating interlayer shear effect, European Journal of Mechanics – A/Solids, 55, 234-242
  • 24. Nilsson J., Neto A.C., Guinea F., Peres N., 2008, Electronic properties of bilayer and multilayer graphene, Physical Review B, 78, 4, 405-434
  • 25. Peddieson J., Buchanan G.R., McNitt R.P., 2003, Application of nonlocal continuum models to nanotechnology, International Journal of Engineering Science, 41, 305-312
  • 26. Pei J., Tian F., Thundat T., 2004, Glucose biosensor based on the microcantilever, Analytical Chemistry, 76, 292-297
  • 27. Reddy J.N., 2007, Nonlocal theories for bending, buckling and vibration of beams, International Journal of Engineering Science, 45, 288-307
  • 28. Reddy J.N., 2010, Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates, International Journal of Engineering Science, 48, 1507-1518
  • 29. Reddy J.N., El-Borgi S., 2014, Eringen’s nonlocal theories of beams accounting for moderate rotations, International Journal of Engineering Science, 82, 159-177
  • 30. Roque C.M.C., Ferreira A.J.M., Reddy J.N., 2011, Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method, International Journal of Engineering Science, 49, 976-984
  • 31. Shkel A.M., 2006, Type I and Type II micromachined vibratory gyroscopes, Proceedings of the IEEE/Institute of Navigation Plans, San Diego, CA, 586-593
  • 32. Simsek M., 2014, Large amplitude free vibration of nanobeams with various boundary conditions based on nonlocal elasticity theory, Composites: Part B, 56, 621-628
  • 33. Thai H.T., 2012, A nonlocal beam theory for bending, buckling, and vibration of nanobeams, International Journal of Engineering Science, 52, 56-64
  • 34. Toupin R.A., 1964, Theories of elasticity with couple-stress, Archive for Rational Mechanics and Analysis, 17, 85-112
  • 35. Wang Q., Wang C.M., 2007, The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes, Nanotechnology, 18, 7
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf0092db-9747-447d-82fd-cc49765f5b80
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.