PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distribution of benthic macroinvertebrates across a reed stand in a brackish Baltic lagoon

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The role of reeds in the functioning of ecosystems and their significance for zoobenthos in the coastal lagoons is poorly understood. We hypothesise that next to the spatial zonal differentiation of abiotic factors in the apparently homogeneous habitat of reeds, benthic macroinvertebrate fauna is also unevenly distributed, and differs in taxonomic and functional diversity, as well as density and biomass across the reed stand. The research was carried out in the Vistula Lagoon (southern Baltic) along three designated sectors arranged parallel to the shoreline and differing in distance from the shore and depth. Mean density of reed stems in the analysed stand was within the range of values reported from different American and European wetlands. Regardless of the location within the reeds and the season, the fauna was dominated by detritivorous Tubificinae and larvae of Chironomidae. The highest diversity, density, and biomass of fauna were found in the middle littoral zone, and the lowest in the outer zone adjacent to the open water. The presented data support our hypothesis predicting the existence of a spatial variation pattern in the composition and distribution of macroinvertebrates in response to the changing zonal habitat conditions within the reed stand.
Czasopismo
Rocznik
Strony
433--444
Opis fizyczny
Bibliogr. 74 poz., map., tab., wykr.
Twórcy
  • National Marine Fisheries Research Institute, Gdynia, Poland
  • National Marine Fisheries Research Institute, Gdynia, Poland
Bibliografia
  • 1. Andersen, T., Cranston, P.S., Epler, J.H., 2013. The larvae of Chironomidae (Diptera) of the Holarctic region — Keys and diagnoses. Insect Syst. Evol. Supplement 66, 573 pp.
  • 2. Armitage, P.D., Cranston, P.S., Pinder, L.C.V., 1995. T HE C HIRONOMIDAE . Biology and ecology of non-biting midges. Chapman and Hall, London-Madrid, 447 pp. https://doi.org/10.1007/978-94-011-0715-0
  • 3. Arnold, S.L., Ormerod, S.J., 1997. Aquatic macroinvertebrates and environmental gradients in Phragmites reedswamps: implications for conservation. Aquat. Conserv. 7 (2), 153-163. https://doi.org/10.1002/(SICI)1099-0755(199706)7:2<153::AID-AQC234>3.0.CO;2-E
  • 4. Berezina, N.A., Golubkov, S.M., 2008. Effect of drifting macroalgae Cladophora glomerata on benthic community dynamics in the easternmost Baltic Sea. J. Marine Syst. 74, 80-85. https://doi.org/10.1016/j.jmarsys.2008.03.027
  • 5. Blott, S.J., Pye, K., 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Proc. Land. 26 (11), 1237-1248. https://doi.org/10.1002/esp.261
  • 6. Brauns, M., Garcia, X.F., Walz, N., Pusch, M.T., 2007. Effects of human shoreline development on littoral macroinvertebrates in lowland lakes. J. Appl. Ecol. 44 (6), 1138-1144. https://doi.org/10.1111/j.1365-2664.2007.01376.x
  • 7. Brucet, S., Boix, D., Nathansen, L.W., Quintana, X.D., Jensen, E., Balayla, D., Meerhoff, M., Jeppesen, E., 2012. Effects of temperature, salinity and fish in structuring the macroinvertebrate community in shallow lakes: Implications for effects of climate change. Plos One 7 (2), 1-11. https://doi.org/10.1371/journal.pone.0030877
  • 8. Cardinale, B.J., Brady, V.J., Burton, T.M., 1998. Changes in the abundance and diversity of coastal wetland fauna from the open water/macrophyte edge towards shore. Wetl. Ecol. Manag. 6(1), 59-68. https://doi.org/10.1023/a:1008447705647
  • 9. Cardinale, B.J., Burton, T.M., Brady, V.J., 1997. The community dynamics of epiphytic midge larvae across the pelagic-littoral interface: do animals respond to changes in the abiotic environment? Can. J. Fish. Aquat. Sci. 54 (10), 2314-2322. https://doi.org/10.1139/cjfas- 54- 10- 2314
  • 10. Conley, D.J., Carstensen, J., Aigars, J., Axe, P., Bonsdorff, E., Eremina, T., Haahti, B.M., Humborg, C., Jonsson, P., Kotta, J., Lannegren, C., Larsson, U., Maximov, A., Medina, M.R., Lysiak-Pastuszak, E., Remeikaite-Nikiene, N., Walve, J., Wilhelms, S., Zillen, L., 2011. Hypoxia is increasing in the coastal zone of the Baltic Sea. Environ. Sci. Technol. 45, 6777-6783. https://doi.org/10.1021/es201212r
  • 11. Cummins, K.W., 1973. Trophic relations of aquatic insects. Annu. Rev. Entomol. 18, 183-206. https://doi.org/10.1146/annurev.en.18.010173.001151
  • 12. Domnin, D.A., Chubarenko, B.V., 2008. Watershed and administrative division of the Kaliningrad Oblast. In: Chubarenko, B. (Ed.), Transboundary waters and basins in the South-East Baltic. Terra Baltica, Russ. Acad. Sci., P.P. Shirshov Inst. Oceanol., Atlantic Branch, Kaliningrad, 306 pp.
  • 13. Dvorak, J., 1970. Horizontal zonation of macrovegetation, water properties and macrofauna in a littoral stand of Glyceria aquatic (L.) Wahlb. in a pond in South Bohemia. Hydrobiologia 15, 17-30.
  • 14. Fell, P.E., Weissbach, S.P., Jones, D.A., Fallon, M.A., Zeppieri, J.A., Faison, E.K., Lennon, K.A., Newberry, K.J., Reddington, L.K., 1998. Does invasion of oligohaline tidal marshes by reed grass, Phragmites australis (Cav) Trin ex Steud, affect the availability of prey resources for the mummichog, Fundulus heteroclitus L.? J. Exp. Mar. Biol. Ecol. 222 (1—2), 59-77. https://doi.org/10.1016/S0022-0981(97)00138-X
  • 15. Gabriel, A.O., Bodensteiner, L.R., 2011. Ecosystem functions of mid-lake stands of common reed in Lake Poygan. Wisconsin. J. Freshw. Ecol. 26 (2), 217-229. https://doi.org/10.1080/02705060.2011.555202
  • 16. Herman, A., 2018. The ice cover of the Vistula Lagoon. In: Bolałek, J. (Ed.), The Vistula Lagoon. PWN, Warsaw, 129-133 (in Polish).
  • 17. Haslam, S.M., 1973. Some aspects of the life history and autecology
  • of Phragmites communis Trin. — A review. Pol. Arch. Hydrobiol. 29 (1), 79-100.
  • 18. Houlihan, D.F., 1969. Respiratory physiology of larva of Donacia simplex, a root-piercing beetle. J. Insect Physiol. 15 (9), 1517-1536. https://doi.org/10.1016/0022-1910(69)90173-5
  • 19. Howard-Williams, C., Lenton, G.M., 1975. The role of the littoral zone in the functioning of a shallow tropical lake ecosystem. Freshw. Biol. 5 (5), 445-459. https://doi.org/10.1111/j.1365-2427.1975.tb00147.x
  • 20. Jacobsen, D., 2020. The dilemma of altitudinal shifts: caught between high temperature and low oxygen. Front. Ecol. Environ. 18 (4), 211-218. https://doi.org/10.1002/fee.2161
  • 21. James, M.R., Weatherhead, M., Stanger, C., Graynoth, E., 1998. Macroinvertebrate distribution in the littoral zone of Lake Coleridge, South Island, New Zealand — effects of habitat stability, wind exposure, and macrophytes. N. Z. J. Mar. Freshw. Res. 32 (2), 287-305. https://doi.org/10.1080/00288330.1998.9516826
  • 22. Jayawardana, J.M.C.K., Westbrooke, M., 2010. Potential effects of riparian vegetation changes on functional organisation of macroinvertebrates in central Victorian streams. Vic. Nat. (Blackburn) 127 (2), 36-48.
  • 23. Jayawardana, J.M.C.K., Westbrooke, M., Wilson, M., Hurst, C., 2006. Macroinvertebrate communities in Phragmites australis (Cav.) Trin. ex Steud. reed beds and open bank habitats in central Victorian streams in Australia. Hydrobiologia 568, 169-185. https://doi.org/10.1007/s10750-006-0103-6
  • 24. Kairesalo, T., 1983. Dynamics of epiphytic communities on Equisetum fluviatile L. In: Wetzel, R.G. (Ed.), Periphiton of freshwater ecosystems, 17. Springer, Dordrecht, 153-160.
  • 25. Karstens, S., Inacio, M., Schernewski, G., 2019. Expert-based evaluation of ecosystem service provision in coastal reed wetlands under different management regimes. Front. Environ. Sci. 7. https://doi.org/10.3389/fenvs.2019.00063
  • 26. Kłosowski, S., 1992. Temporal and spatial variation of habitat conditions in the zonation of littoral plant communities. Aquat. Bot. 43 (2), 199-208. https://doi.org/10.1016/0304-3770(92)90043-I
  • 27. Kornijów, R., 2018. Ecosystem of the Polish part of the Vistula Lagoon from the perspective of alternative stable states concept, with implications for management issues. Oceanologia 60 (3), 390-404. https://doi.org/10.1016/j.oceano.2018.02.004
  • 28. Kornijów, R., Dukowska, M., Leszczynska, J., Smith, C., Jeppesen, E., Hansson, L.A., Ketola, M., Irvine, K., Noges, T., Sahuquillo, M., Miracle, M.R., Gross, E., Kairesalo, T., van Donk, E., de Eyto, E., Garcia-Criado, F., Grzybkowska, M., Moss, B., 2021a. Distribution patterns of epiphytic reed-associated macroinvertebrate communities across European shallow lakes. Sci. Total Environ. 760, 144117. https://doi.org/10.1016/j.scitotenv.2020.144117
  • 29. Kornijów, R., Gulati, R.D., 1992. Macrofauna and its ecology in Lake Zwemlust, after biomanipulation. I. Bottom fauna. Arch. Hydrobiol. 123 (3), 337-347.
  • 30. Kornijów, R., Pawlikowski, K., Bł ̨edzki, L.A., Drgas, A., Piwosz, K., Ameryk, A., Całkiewicz, J., 2021b. Co-occurrence and potential resource partitioning between oligochaetes and chironomid larvae in a sediment depth gradient. Aquat. Sci. 83 (51), 1-10. https://doi.org/10.1007/s00027-021-00800-z
  • 31. Kornijów, R., Strayer, D.L., Caraco, N.F., 2010. Macroinvertebrate communities of hypoxic habitats created by an invasive plant (Trapa natans) in the freshwater tidal Hudson River. Fund. Appl. Limnol. 176 (3), 199-207. https://doi.org/10.1127/1863-9135/2010/0176-0199
  • 32. Kownacka, J., Całkiewicz, J., Kornijów, R., 2020. A turning point in the development of phytoplankton in the Vistula Lagoon (southern Baltic Sea) at the beginning of the 21st century. Oceanologia 62 (4 Pt. A), 538-555. https://doi.org/10.1016/j.oceano.2020.08.004
  • 33. Linkowski, T.B., Kornijów, R., Karpowicz, M., 2021. Comparison of three methods for nocturnal sampling of predatory zooplankters in shallow waters. Oceanologia 63 (1), 71-79. https://doi.org/10.1016/j.oceano.2020.10.001
  • 34. Lissner, J., Schierup, H.H., 1997. Effects of salinity on the growth of Phragmites australis. Aquat. Bot. 55, 247-260. https://doi.org/10.1016/S0304-3770(96)01085-6
  • 35. Maasri, A., Schechner, A.E., Erdenee, B., Dodds, W.K., Chandra, S., Gelhaus, J.K., Thorp, J.H., 2019. Does diel variation in oxygen influence taxonomic and functional diversity of stream macroin-vertebrates? Freshw. Sci. 38 (4), 692-701. https://doi.org/10.1086/705916
  • 36. Macneil, C., Dick, J.T.A., Elwood, R.W., 1999. The dynamics of predation on Gammarus spp. (Crustacea: Amphipoda). Biol. Rev. (Camb.) 74 (4), 375-395. https://doi.org/10.1017/S0006323199005368
  • 37. Mancinelli, G., Sabetta, L., Basset, A., 2005. Short-term patch dynamics of macroinvertebrate colonization on decaying reed detritus in a Mediterranean lagoon (Lake Alimini Grande, Apulia, SE Italy). Mar. Biol. 148 (2), 271-283. https://doi.org/10.1007/s00227-005-0091-5
  • 38. Meijering, M.P.D., 1991. Lack of oxygen and low pH as limiting factors for Gammarus in Hessian brooks and rivers. Hydrobiologia 223, 159-169. https://doi.org/10.1007/bf00047637
  • 39. Meyerson, L.A., Saltonstall, K., Windham, L., Kiviat, E., Findlay, S.A., 2000. A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wetl. Ecol. Manag. 8, 89-103. https://doi.org/10.1023/A:1008432200133
  • 40. Miler, O., Czarnecka, M., Garcia, X.F., Jager, A., Pusch, M., 2018. Across-shore differences in lake benthic invertebrate communities within reed stands (Phragmites australis (Cav.) Trin. Ex Steud.). Int. Rev. Hydrobiol. 103 (5-6), 99-112. https://doi.org/10.1002/iroh.201801955
  • 41. Miler, O., Porst, G., McGoff, E., Pilotto, F., Donohue, L., Jurca, T., Solimini, A., Sandin, L., Irvine, K., Aroviita, J., Clarke, R., Pusch, M.T., 2013. Morphological alterations of lake shores in Europe: A multimetric ecological assessment approach using benthic macroinvertebrates. Ecol. Indic. 34, 398-410. https://doi.org/10.1016/j.ecolind.2013.06.002
  • 42. Moss, B., 1998. Ecology of freshwaters. Man and medium, past to future, 3rd edn. Blackwell Science, Oxford, 572 pp.
  • 43. Natural Earth, 2020. Natural Earth — Free vector and raster map data, https://www.naturalearthdata.com/ (access 2020.12.16)
  • 44. NOAA GSHHG, 2014. Global self-consistent hierarchical high resolution geography, https://www.ngdc.noaa.gov/mgg/shorelines/data/gshhg/latest/ (access 2014.12.30)
  • 45. Oertli, B., 1995. Spatial and temporal distribution of the zoobenthos community in a woodland pond (Switzerland). Hydrobiologia 300, 195-204. https://doi.org/10.1007/Bf00024461
  • 46. Okun, N., Lewin, W.C., Mehner, T., 2005. Top-down and bottom-up impacts of juvenile fish in a littoral reed stand. Freshw. Biol. 50 (5), 798-812. https://doi.org/10.1111/j.1365-2427.2005.01361.x
  • 47. Okun, N., Mehner, T., 2005. Distribution and feeding of juvenile fish on invertebrates in littoral reed (Phragmites) stands. Ecol. Freshw. Fish. 14 (2), 139-149. https://doi.org/10.1111/j.1600-0633.2005.00087.x
  • 48. Olson, E.J., Engstrom, E.S., Doeringsfeld, M.R., Bellig, R., 1995. Abundance and distribution of macroinvertebrates in relation to macrophyte communities in a prairie marsh, Swan-Lake, Minnesota. J. Freshw. Ecol. 10 (4), 325-335. https://doi.org/10.1080/02705060.1995.9663455
  • 49. OpenStreetMap Contributors, 2021. OpenStreetMap — Open-TopoMap. Accessed by OSM plugin in QGIS. Ostendorp, W., 1993. Reed bed characteristics and significance of reed in landscape ecology. In: Ostedorp, W., Krumsheid—Plankert, P. (Eds.), Lakeshore deterioration and restoration works in Central Europe. Fischer-Verlag, Stuttgart, 149-161.
  • 50. Pawlikowski, K., Kornijów, R., 2019. Role of macrophytes in structuring littoral habitats in the Vistula Lagoon (southern Baltic Sea). Oceanologia 61 (1), 26-37. https://doi.org/10.1016/j.oceano.2018.05.003
  • 51. Pawlikowski, K., Kornijów, R., 2022. Patterns of macroinvertebrates distribution in a sediment depth gradient in habitats dominated by emergent and submerged vegetation. Oceanologia Submitted for publication.
  • 52. Pellan, L., Médoc, V., Renault, D., Spataro, T., Piscart, C., 2016. Feeding choice and predation pressure of two invasive gammarids, Gammarus tigrinus and Dikerogammarus villosus, under increasing temperature. Hydrobiologia 781, 43-54. https://doi.org/10.1007/s10750-015-2312-3
  • 53. Perez-Ruzafa, A., Marcos, C., Perez-Ruzafa, I.M., Perez-Marcos, M., 2011. Coastal lagoons: “transitional ecosystems” between transitional and coastal waters. J. Coast. Conserv. 15 (3), 369-392. https://doi.org/10.1007/s11852-010-0095-2
  • 54. Pinder, L.C.V., et al., 1995. The habitats of chironomid larvae. In: Armitage, P.S., et al. (Eds.), Chironomidae: biology and ecology of non-biting midges. Chapman & Hall, London, 107-135.
  • 55. Raichel, D.L., Able, K.W., Hartman, J.M., 2003. The influence of Phragmites (common reed) on the distribution, abundance, and potential prey of a resident marsh fish in the Hackensack Meadowlands, New Jersey. Estuaries 26 (2b), 511-521. https://doi.org/10.1007/Bf02823727
  • 56. Reddy, K.R., Dangelo, E.M., Debusk, T.A., 1990. Oxygen transport through aquatic macrophytes — the role in waste-water treatment. J. Environ. Qual. 19 (2), 261-267. https://doi.org/10.2134/jeq1990.00472425001900020011x
  • 57. Sagova-Mareckova, M., Kvet, J., 2002. Impact of oxygen released by the roots of aquatic macrophytes on composition and distribution of benthic macroinvertebrates in a mesocosm experiment. Arch. Hydrobiol. 155 (4), 567-584.
  • 58. Sand-Jensen, K., Prahl, C., Stokholm, H., 1982. Oxygen release from roots of submersed aquatic macrophytes. Oikos 38 (3), 349-354. https://doi.org/10.2307/3544675
  • 59. Savage, A.A., 1982. The survival and growth of Gammarus tigrinus Sexton (Crustacea: Amphipoda) in relation to salinity and temperature. Hydrobiologia 94 (3), 201-212.
  • 60. Schlacher, T.A., Wooldridge, T.H., 1996. How sieve mesh size affects sample estimates of estuarine benthic macrofauna. J. Exp. Mar. Biol. Ecol. 201, 159-171. https://doi.org/10.1016/0022- 0981(95)00198- 0
  • 61. SIPAM, 2020. System informacji przestrzennej administracji morskiej. https://sipam.gov.pl/
  • 62. StatSoft, 2011. Statistica software version 10. StatSoft Inc., http://www.statsoft.com
  • 63. Suzuki, N., Endoh, S., Kawashima, M., Itakura, Y., McNabb, C.D., D’Itri, F.M., Batterson, T.R., 1995. Discontinuity bar in a wetland of Lake Huron’s Saginaw Bay. J. Freshwater Ecol. 10 (2), 111-123.
  • 64. Swearingen, J., Saltonstall, K., 2012. Phragmites field guide: distinguishing native and exotic forms of common reed (Phragmites australis) in the United States. USDA — Natural Resources Conservation Service Boise, TN Plant Materials NO 56 , Idaho. https://www.nrcs.usda.gov/Internet/FSE_PLANTMATERIALS/publications/idpmctn11494.pdf
  • 65. Sychra, J., Adamek, Z., Petrivalska, K., 2010. Distribution and diversity of littoral macroinvertebrates within extensive reed beds of a lowland pond. Ann. Limnol. - Int. J. Lim. 46 (4), 281-289. https://doi.org/10.1051/limn/2010026
  • 66. Timm, T., 1999. A guide to the Estonian Annelida. Estonian Academy Publishers, Tallinn, 208 pp. Vaughn, C.C., 1982. Distribution of Chironomids in the littoral-zone of Lake Texoma, Oklahoma and Texas. Hydrobiologia 89 (2), 177-188. https://doi.org/10.1007/Bf00006170
  • 67. Verberk, W., Bilton, D.T., Calosi, P., Spicer, J.I., 2011. Oxygen supply in aquatic ectotherms: Partial pressure and solubility to-gether explain biodiversity and size patterns. Ecology 92 (8), 1565-1572. https://doi.org/10.1890/10-2369.1
  • 68. Viaroli, P., Bartoli, M., Bondavalli, C., Christian, R.R., Giordani, G., Naldi, M., 1996. Macrophyte communities and their impact on benthic fluxes of oxygen, sulphide and nutrients in shallow eutrophic environments. Hydrobiologia 329 (1—3), 105-119. https://doi.org/10.1007/Bf00034551
  • 69. Warfe, D.M., Barmuta, L.A., 2004. Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141 (1), 171-178. https://doi.org/10.1007/s00442-004-1644-x
  • 70. Warren, R.S., Fell, P.E., Grimsby, J.L., Buck, E.L., Rilling, G.C., Fertik, R.A., 2001. Rates, patterns, and impacts of Phragmites australis expansion and effects of experimental Phragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River. Estuaries 24 (1), 90-107. https://doi.org/10.2307/1352816
  • 71. WoRMS Editorial Board, 2021. World Register of Marine Species. VLIZ. Available from https://doi.org/10.14284/170
  • 72. Yozzo, D.J., Osgood, D.T., 2013. Invertebrate communities of low-salinity wetlands: overview and comparison between Phragmites and Typha marshes within the Hudson River Estuary. Estuar. Coast. 36 (3), 575-584. https://doi.org/10.1007/s12237-012-9543-6
  • 73. Zachowicz, I.M., 1985. From biostratigraphical studies of sediments from the Vistula Lagoon. Petrobalticum 3, 97-111 (in Polish).
  • 74. Zbikowski, J., ̇Zbikowska, E., Kobak, J., 2021. The presence of fine sand in the muddy sediments affects habitat selection and accelerates the growth rate of Limnodrilus hoffmeisteri and Limnodrilus claparedianus (Oligochaeta). Hydrobiologia 848 (11), 2761-2771. https://doi.org/10.1007/s10750-021-04595-w
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf0037fa-109e-4136-93d0-989bd788389f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.