PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On normalizers and centralizers of compact Lie groups. Applications to structural probability theory

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The concept of operator stability on finite-dimensional vector spaces V was generalized in the past into several directions. In particular, operator-semistable and self-decomposable laws and self-similar processes were investigated and the underlying vector space V may be replaced by a simply connected nilpotent Lie group G. This motivates investigations of certain linear subgroups of GL (V) and Aut (G), respectively, the decomposability group of a full probability μ and its compact normal subgroup, the invariance group. Using some basic properties of algebraic groups, the structure of normalizers and centralizers of compact matrix groups is analyzed and applied to the above-mentioned set-up, proving the existence and describing the shape of exponents and of commuting exponents of (operator-) semistable laws. Further applications are mentioned, in particular for operator self-decomposable laws and self-similar processes.
Rocznik
Strony
39--60
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • Department of Mathematics, University of Dortmund, D-44221 Dortmund, Germany
Bibliografia
  • [1] P. Becker-Kern, Stabile randomisierte Grenzwertsätze, Ph. D. Thesis, Universität Dortmund, 1999.
  • [2] P. Becker-Kern, Stable and semistable hemigroups: Domains of attraction and selfdecomposability, preprint, submitted, 2001.
  • [3] A. Borel, Groupes linéaires algébriques, Ann. Math. II 64 (1956), pp. 20-82.
  • [4] A. Borel, Linear Algebraic Groups (Lecture Notes taken by H. Bass), Benjamin, 1969.
  • [5] A. Borel, Linear Algebraic Groups, 2nd edition, Springer, 1969.
  • [6] V. Chorny, Operator semistable distributions on Rd, Theory Probab. Appl. 31 (1966) pp. 703-705.
  • [7] W. Hazod, Stable hemigroups and mixing of generating functionals, J. Math. Sci. 111 (2002), pp. 3830-3840.
  • [8] W. Hazod, K. H. Hofmann, H.-P. Scheffler, M. Wüstner and H. Zeuner, The existence of commuting automorphisms and applications of operator semistable measures, J. Lie Theory 8 (1998), pp. 189-209.
  • [9] W. Hazod and E. Siebert, Stable Probability Measures on Euclidean Spaces and on Locally Compact Groups. Structural Properties and Limit Theorems, Mathematics and Its Applications Vol. 531, Kluwer A.P., 2001.
  • [10] K. H. Hofmann, Locally compact semigroups in which a subgroup with compact complement is dense, Trans. Amer. Math. Soc. 106 (1963), pp. 19-51 and 52-63.
  • [11] K. H. Hofmann and P. Mostert, Splitting in Topological Groups, Mem. Amer. Math. Soc. 43 (1963).
  • [12] W. N. Hudson and J. D. Mason, Operator self-similar processes in a finite dimensional space, Trans. Amer. Math. Soc. 273 (1982), pp. 281-297.
  • [13] J. E. Humphreys, Linear Algebraic Groups, Springer, 1975.
  • [14] R. Jajte, Semistable probability measures on RN, Studia Math. 61 (1977), pp. 29-39.
  • [15] Z. Jurek, Operator exponents of probability measures and Lie semigroups, Ann. Probab. 20 (1992), pp. 1053-1062.
  • [16] Z. Jurek and J. D. Mason, Operator Limit Distributions in Probability Theory, Wiley, 1993.
  • [17] A. Luczak, Exponents and symmetry of operator Lévy’s probability measures on finite dimensional vector spaces, J. Theoret. Probab. 10 (1997), pp. 117-129.
  • [18] M. Maejima, Norming operators for operator-self-similar processes, in: Stochastic Processes and Related Topics, Karatzas et al. (Eds.), Trends in Mathematics, Birkhäuser, 1998, pp. 287-295.
  • [19] M. Maejima and D. J. Mason, Operator self-similar stable processes, Stochastic Process. Appl. 54 (1994), pp. 139-163.
  • [20] M. M. Meerschaert and H.-P. Scheffler, Spectral decomposition for operator self-similar processes and their generalized domains of attraction, Stochastic Process. Appl. 84 (1999), pp. 71-80.
  • [21] M. M. Meerschaert and H.-P. Scheffler, Limit Theorems for Sums of Independent Random Vectors. Heavy Tails in Theory and Praxis, Wiley, 2001.
  • [22] A. L. Onischnik and E. B. Vinberg, Lie Groups and Algebraic Groups, Springer, 1980.
  • [23] D. Poguntke, Normalizers and centralizers of reductive subgroups of almost connected Lie groups, J. Lie Theory 8 (1998), pp. 211-217.
  • [24] M. Sharpe, Operator stable probability measures on vector groups, Trans. Amer. Math. Soc. 136 (1969), pp. 51-65.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf001cf0-5e97-47bf-8cbc-0c1a42ca7ae8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.