PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of surface integrity on fatigue life of 7075‑T6 aluminum alloy by combination of fine turning with hydrostatic deep rolling

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the 7075-T6 aluminum alloy sample was firstly prepared by fine turning(FT) process, and then the surface treatments were subjected to hydrostatic deep rolling(HDR), including constant pressure deep rolling(CPDR) and increasing pressure deep rolling(IPDR). Subsequently, the influence of surface integrity on the fatigue life of the 7075-T6 aluminum alloy is investigated by the combination of FT with HDR. The results show that the fatigue life of IPDR and CPDR samples is increased significantly by 148% and 450% compared to the FT sample in the tensile-compression fatigue test. The improved fatigue life of IPDR and CPDR samples is a result of reduced significantly surface roughness and the increase of surface compressive residual stress, surface micro-hardness and the depth of plastic deformation layer. In addition, the deeper plastic deformation layer is the main reason for the higher fatigue life of the CPDR sample than the IPDR sample.
Rocznik
Strony
art. no. e41, 2023
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
  • Associated Engineering Research Center of Mechanics and Mechatronic Equipment, Shandong University, Weihai 264209, People’s Republic of China
autor
  • Associated Engineering Research Center of Mechanics and Mechatronic Equipment, Shandong University, Weihai 264209, People’s Republic of China
autor
  • School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
autor
  • Associated Engineering Research Center of Mechanics and Mechatronic Equipment, Shandong University, Weihai 264209, People’s Republic of China
autor
  • Automotive Research Institute of Sinotruk, Jinan 250102, People’s Republic of China
autor
  • Associated Engineering Research Center of Mechanics and Mechatronic Equipment, Shandong University, Weihai 264209, People’s Republic of China
Bibliografia
  • 1. Fridlyander IN. Russian alumioum alloys for aerospace and transport applicatioo. Mater Sci Forum. 2000;331-337:921-6.
  • 2. Rokni MR, Zarei-Hanzaki A, Roostaei AA, et al. An investigation into the hot deformation characteristics of 7075 aluminum alloy. Mater Des. 2011;32(4):2339-44.
  • 3. Zhao T, Zhang J, Jiang Y. A study of fatigue crack growth of 7075-T651 aluminum alloy. Int J Fatigue. 2008;30(7):1169-80.
  • 4. Bhuiyan MS, Mutoh Y, Mcevily AJ. The influence of mechanical surface treatments on fatigue behavior of extruded AZ61 magnesium alloy. Mater Sci Eng A. 2012;549:69-75.
  • 5. Wu D, Yao C, Zhang D. Surface characterization and fatigue evaluation in GH4169 superalloy: comparing results after finish turning; shot peening and surface polishing treatments. Int J Fatigue. 2018;113:222-35.
  • 6. Tan L, Yao C, Zhang D, et al. Evolution of surface integrity and fatigue properties after milling, polishing, and shot peening of TC17 alloy blades. Int J Fatigue. 2020;136: 105630.
  • 7. Zhao W, Liu D, Zhang X, et al. Improving the fretting and corrosion fatigue performance of 300M ultra-high strength steel using the ultrasonic surface rolling process. Int J Fatigue. 2019;121:30-8.
  • 8. Backer V, Klocke F, Wegner H, et al. Analysis of the deep rolling process on turbine blades using the FEM/BEM-coupling[C]//IOP Conference Series: Materials Science and Engineering. IOP Publ. 2010;10(1): 012134.
  • 9. De Lacalle LNL, Lamikiz A, Munoa J, et al. Quality improvement of ball-end milled sculptured surfaces by ball burnishing[J]. Int J Mach Tools Manuf. 2005;45(15):1659-68.
  • 10. Rodak K, Urbańczyk-Gucwa A, Jabłońska MB. Microstructure and properties of CuCr0. 6 and CuFe2 alloys after rolling with the cyclic movement of rolls. Arch Civil Mech Eng. 2018;18(2):500-7.
  • 11. Saldana Robles A, Plascencia-Mora H, Aguilera-Gomez E, et al. Influence of ball-burnishing on roughness, hardness and corrosion resistance of AISI 1045 steel. Surf Coat Technol. 2018;339:191-8.
  • 12. Fu H, Liu Y, Xu Q, et al. Effect of deep rolling parameters on surface integrity of LZ50 axles. Int J Mod Phys B. 2019;3:1950298.
  • 13. Raajshree RK, Anirudh PV, Karunakaran C, et al. Exploring grinding and burnishing as surface post-treatment options for electron beam additive manufactured Alloy 718. Surf Coat Technol. 2020;397:126063.
  • 14. Tian Y, Shin YC. Laser-assisted burnishing of metals[J]. Int J Mach Tools Manuf. 2007;47(1):14-22.
  • 15. Rodriguez A, Lopez de Lacalle LN, Celaya A, et al. Surface improvement of shafts by the deep ball-burnishing technique. Surf Coat Technol. 2012;206(11-12):2817-24.
  • 16. Liu F, Liu Z, He G. Effect of cold rolling on microstructure and hardness of annealed Al-Cu-Mg alloy. Arch Civil Mech Eng. 2022;22(2):1-17.
  • 17. Zhang T, Li H, Gong H, et al. Comparative analysis of cold and warm rolling on tensile properties and microstructure of additive manufactured Inconel 718. Arch Civil Mech Eng. 2022;22(1):1-14.
  • 18. Nalla RK, Altenberger I, Noster U, et al. On the influence of mechanical surface treatments-deep rolling and laser shock peening-on the fatigue behavior of Ti-6Al-4V at ambient and elevated temperatures. Mater Sci Eng, A. 2003;355(1-2):216-30.
  • 19. Munoz-Cubillos J, Coronado JJ, Rodriguez SA. Deep rolling effect on fatigue behavior of austenitic stainless steels. Int J Fatigue. 2017;95:120-31.
  • 20. Carneiro L, Wang X, Jiang Y. Cyclic deformation and fatigue behavior of 316L stainless steel processed by surface mechanical rolling treatment. Int J Fatigue. 2020;134:105469.
  • 21. Hua Y, Liu Z, Wang B, et al. Surface modification through combination of finish turning with low plasticity burnishing and its effect on fatigue performance for Inconel 718. Surf Coat Technol. 2019;375:508-17.
  • 22. Goutam Devaraya R, Shetty R, Rao SS, et al. Wear resistance enhancement of titanium alloy (Ti-6Al-4V) by ball burnishing proceses. J Market Res. 2018;6(1):13-32.
  • 23. Shen X, Gong X, Wang B, et al. Surface properties enhancement of Inconel 718 alloy by ultrasonic roller burnishing coupled with heat treatment. Arch Civil Mech Eng. 2021;21(3):1-17.
  • 24. Egea AJS, Rodriguez A, Celentano D, et al. Joining metrics enhancement when combining FSW and ball-burnishing in a 2050 aluminium alloy. Surf Coat Technol. 2019;367:327-35.
  • 25. Su H, Shen X, Xu C, et al. Surface characteristics and corrosion behavior of TC11 titanium alloy strengthened by ultrasonic roller burnishing at room and medium temperature. J Market Res. 2020;9(4):8172-85.
  • 26. Neuber H. Theory of notch stresses: principles for exact calculation of strength with reference to structural form and material. USAEC Office of Technical Information; 1961.
  • 27. Arola D, Williams CL. Estimating the fatigue stress concentration factor of machined surfaces. Int J Fatigue. 2002;24(9):923-30.
  • 28. Shaojie He, Analysis and experimental investigation of fatigue stress concentration factor of milled surface [D]. Huazhong University of Science and Technology, 2016.
  • 29. Duan CZ, Yu HY, Wang MJ, et al. Research on adiabatic shear during serrated chip formation of high speed turning of hardened steel. Adv Mater Res. 2010;139-141:743-7.
  • 30. Arısoy YM, Guo C, Kaftanoğlu B, et al. Investigations on microstructural changes in machining of Inconel 100 alloy using face turning experiments and 3D finite element simulations. Int J Mech Sci. 2016;107:80-92.
  • 31. Abrao AM, Denkena B, Kohler J, et al. The Influence of deep rolling on the surface integrity of AISI 1060 high carbon steel. Procedia Cirp. 2014;13:31-6.
  • 32. Mhaede M, Altenberger I, Sano Y, et al. Surface layer properties and fatigue behavior in Ti-6Ai-4V: Comparing results after laser shock peening, shot peening and ball-burnishing[C]// Ti-2011, Titanium Science and Technology (Eds. L. Zhou, H. Chang, Y. Lu, D. Xu) Science Press Beijing, pp. 1338. 2012.
  • 33. Liang S, Liang SY, et al. Dynamic recrystallization of Al Alloy 7075 in turning. J Manuf Sci Eng Trans ASME. 2016. https:// doi.org/10.1115/1.40328 07.
  • 34. Zhao Q, Liu Z, Hu Y, et al. Evolution of Goss texture in an Al-Cu-Mg alloy during cold rolling. Arch Civil Mech Eng. 2020;20(1):1-15.
  • 35. Hansen N. Hall-Petch relation and boundary strengthening. Scr Mater. 2004;51(8):801-6.
  • 36. Prevey PS, Cammett JT. The influence of surface enhancement by low plasticity burnishing on the corrosion fatigue performance of AA7075-T6. Int J Fatigue. 2004;26(9):975-82.
  • 37. Maximov JT, Anchev AP, Dunchev VP, et al. Effect of slide burnishing basic parameters on fatigue performance of 2024-T3 high-strength aluminum alloy. Fatigue Fract Eng Mater Struct. 2017;40(11):1893-904.
  • 38. Maximov JT, Anchev AP, Duncheva GV, et al. Impact of slide diamond burnishing additional parameters on fatigue behaviour of 2024-T3 Al alloy. Fatigue Fract Eng Mater Struct. 2019;42(1):363-73.
  • 39. Brinckmann S, Giessen E. A fatigue crack initiation model incorporating discrete dislocation plasticity and surface roughness. Int J Fract. 2007;148(2):155-67.
  • 40. Chan KS. Roles of microstructure in fatigue crack initiation. Int J Fatigue. 2010;32(9):1428-47.
  • 41. Oevermann T, Wegener T, Liehr A, et al. Evolution of residual stress, microstructure and cyclic performance of the equiatomic high-entropy alloy CoCrFeMnNi after deep rolling. Int J Fatigue. 2021;153: 106513.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-befd9116-07d5-4cf6-9662-594730fafa3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.