PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Extreme precipitation indices trend assessment over Thrace region, Turkey

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The frequency and the severity of extreme weather events are increasing globally and will continue to do so in the coming decades as a consequence of our changing climate. Understanding the characteristics of these events is crucial due to their signifcant negative impacts on social, physical and economic environments. In this study, 14 extreme rainfall indices are determined and examined in terms of trends and statistical characteristics for the four meteorological stations located in the Thrace region of Turkey, namely Edirne, Tekirdag, Kirklareli and Sariyer (Istanbul). The results indicate that annual total precipitation has an increasing trend for the Kirklareli and Sariyer stations (z=1.730 and z=2.127) and a decreasing trend for the Edirne and Tekirdag stations (z=− 0.368 and z=− 0.401). However, the precipitation intensity indices (SDII) of all stations show increasing trends that are statistically signifcant for the Edirne and Kirklareli stations. The Kirklareli station tends to have more days with heavy, very heavy and extremely heavy rainfall events (z=2.241, z=2.076 and z=1.684, respectively). It is also anticipated that maximum amount of rainfalls in daily and consecutive fve- and ten-day time scales will probably increase at all stations. Moreover, rainfall from very wet days and extremely wet days and fraction of total wet day rainfall that comes from very wet days and extremely wet days indices also show increasing trend tendencies for all stations. The remarkable point is the decreasing total precipitation trend at the Edirne and Tekirdag stations, contrary to the Kirklareli and Sariyer stations, which indicates that the annual total precipitation does not necessarily depend on extreme precipitation for the analyzed period.
Czasopismo
Rocznik
Strony
307--321
Opis fizyczny
Bibliogr. 49 poz.
Twórcy
autor
  • Department of Civil Engineering, Kirsehir Ahi Evran University, Kirsehir 40100, Turkey
autor
  • Department of Civil Engineering, Kirsehir Ahi Evran University, Kirsehir 40100, Turkey
Bibliografia
  • 1. Abbasnia M, Toros H (2018) Analysis of long-term changes in extreme climatic indices: a case study of the Mediterranean climate, Marmara Region. Turkey Pure Appl Geophys 175(11):3861–3873. https://doi.org/10.1007/s00024-018-1888-8
  • 2. Abbasnia M, Toros H (2020) Trend analysis of weather extremes across the coastal and non-coastal areas (case study: Turkey). J Earth Syst Sci 129:95. https://doi.org/10.1007/s12040-020-1359-3
  • 3. Acar Z, Gonencgil B, Korucu Gümüşoğlu N (2018) Long-term changes in hot and cold extremes in Turkey. Cografya Dergisi 37:57–67
  • 4. Ahmad I, Tang D, Wang T, Wang M, Wagan B (2015) Precipitation trends over time using Mann-Kendall and Spearman’s rho tests in Swat River basin. Pakistan Adv Meteorol 2015:431860. https://doi.org/10.1155/2015/431860
  • 5. Alexander L and Herold N (2016) ClimPACT2: Indices and Software. A document prepared on behalf of the commission for climatology (CCl) expert team on sector-specific climate indices (ET-SCI)
  • 6. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci P, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109. https://doi.org/10.1029/2005JD006290
  • 7. Alexander L, Yang H and Perkins S (2013) Clim PACT, Indices and software. A document prepared on behalf of the commission for climatology (CCl) expert team on climate risk and sector-specific climate indices (ET CRSCI)
  • 8. Attogouinon A, Lawin AE, M’Po YN, Houngue R (2017) Extreme precipitation indices trend assessment over the upper Oueme River valley-(Benin). Hydrology 4(3):36. https://doi.org/10.3390/hydrology4030036
  • 9. Bagdatli MC, Belliturk K (2016) Water resources have been threatened in Thrace region of Turkey. Adv Plants Agric Res 4(1):227–228
  • 10. Chen Y, Guan Y, Shao G, Zhang D (2016) Investigating trends in streamflow and precipitation in Huangfuchuan basin with wavelet analysis and the Mann-Kendall test. Water 8(3):77. https://doi.org/10.3390/w8030077
  • 11. Gilbert RO (1987) Statistical methods for environmental pollution monitoring. Wiley, New York
  • 12. Gönençgıl B (2012) Climate characteristics of Thrace and observed temperature-precipitation trends. In: Proceedings of the 2nd international Balkan annual conference (IBAC 2012), Tiran
  • 13. Hamed KH, Rao AR (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204(1–4):182–196. https://doi.org/10.1016/S0022-1694(97)00125-X
  • 14. Harpa G-V, Croitoru A-E, Djurdjevic V, Horvath C (2019) Future changes in five extreme precipitation indices in the lowlands of Romania. Int J Climatol 39(15):5720–5740. https://doi.org/10.1002/joc.6183
  • 15. Herold N, Ekström M, Kala J, Goldie J, Evans JP (2018) Australian climate extremes in the 21st century according to a regional climate model ensemble: Implications for health and agriculture. Weather Clim Extremes 20:54–68. https://doi.org/10.1016/j.wace.2018.01.001
  • 16. IPCC (Intergovernmental Panel on Climate Change) (2012) Managing the risks of extreme events and disasters to advance climate change adaptation special report of Working Groups I and II of the Intergovernmental Panel on Climate Change [Field CB, Barros V, Stocker TF, Dahe Q, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds)]. Cambridge University Press, Cambridge and New York
  • 17. IPCC (Intergovernmental Panel on Climate Change) (2013) Climate change 2013: The physical science basis-contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker TF, Qin D, Plattner G-K, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds)]. Cambridge University Press, Cambridge and New York
  • 18. IPCC (Intergovernmental Panel on Climate Change) (2014a) Climate change 2014: Impacts, adaptation and vulnerability, Part A: global and sectoral aspects-contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change [Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds)]. Cambridge University Press, Cambridge and New York
  • 19. IPCC (Intergovernmental Panel on Climate Change) (2014b) Climate change 2014: synthesis report-contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri RK, Meyer L (eds)]. IPCC, Geneva
  • 20. Junk J, Goergen K, Krein A (2019) Future heat waves in different European capitals based on climate change indicators. Int J Environ Res Public Health 16:3959
  • 21. Keggenhoff I, Elizbarashvili M, Amiri-Farahani A, King L (2014) Trends in daily temperature and precipitation extremes over Georgia, 1971–2010. Weather Clim Extrem 4:75–85. https://doi.org/10.1016/j.wace.2014.05.001
  • 22. Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, London
  • 23. Klein Tank AMG, Peterson TC, Quadir DA, Dorji S, Zou X, Tang H, Santhosh K, Joshi UR, Jaswal AK, Kolli RK, Sikder AB, Deshpande NR, Revadekar JV, Yeleuova K, Vandasheva S, Faleyeva M, Gomboluudev P, Budhathoki KP, Hussain A, Afzaal M, Chandrapala L, Anvar H, Amanmurad D, Asanova VS, Jones PD, New MG, Spektorman T (2006) Changes in daily temperature and precipitation extremes in central and south Asia. J Geophys Res 111(D16):D16105. https://doi.org/10.1029/2005JD006316
  • 24. Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. WCDMP-72, WMO-TD/No.1500; 56 pp
  • 25. Köyceği̇z, C , Büyükyıldız, M . (2019). Temporal trend analysis of extreme precipitation: a case study of Konya Closed Basin . Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi , Volume: 25 - No: 8 , 956–961 . Retrieved from https://dergipark.org.tr/en/pub/pajes/issue/51127/668093
  • 26. Mann HB (1945) Nonparametric tests against trend. Econometrica 13(3):163–171. https://doi.org/10.2307/1907187
  • 27. MGM (Turkish State Meteorological Service) (2020) Daily precipitation records of the Edirne (1952–2016), Kirklareli (1981–2016), Tekirdag (1955–2016) and Sariyer (1960–2016) meteorological stations. Turkish state meteorological service, Ankara
  • 28. Militino AF, Moradi M, Ugarte MD (2020) On the performances of trend and change-point detection methods for remote sensing data. Remote Sens 12(6):1008. https://doi.org/10.3390/rs12061008
  • 29. Myhre G, Alterskjær K, Stjern CW, Hodnebrog Ø, Marelle L, Samset BH, Sillmann J, Schaller N, Fischer E, Schulz M, Stohl A (2019) Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci Rep 9:16063. https://doi.org/10.1038/s41598-019-52277-4
  • 30. Nigussie TA, Altunkaynak A (2019) Impacts of climate change on the trends of extreme rainfall indices and values of maximum precipitation at Olimpiyat Station, Istanbul, Turkey. Theor Appl Climatol 135:1501–1515. https://doi.org/10.1007/s00704-018-2449-x
  • 31. Oruc S (2020) Investigation of the effect of climate change on extreme precipitation: Tekirdağ case. Turkish J Water Sci Manage 4(2):136–161. https://doi.org/10.31807/tjwsm.746134
  • 32. Patakamuri SK, O’Brien N (2020) Modified versions of Mann Kendall and Spearman’s Rho trend tests (R software package, version 1.5.0) https://cran.r-project.org/web/packages/modifiedmk/index.html. Accessed 18 June 2020
  • 33. Patakamuri SK, Muthiah K, Sridhar V (2020) Long-term homogeneity, trend and change-point analysis of rainfall in the arid district of Ananthapuramu Andhra Pradesh state. India Water 12(1):211. https://doi.org/10.3390/w12010211
  • 34. Rao AR, Hamed KH, Chen H-L (2003) Nonstationarities in hydrologic and environmental time series. Kluwer Academic Publishers, Dordrecht
  • 35. Şaylan L, Çaldağ B, Bakanoğulları F, Toros H, Yazgan M, Şen O, Özkoca Y (2011) Spatial variation of the precipitation chemistry in the Thrace region of Turkey. Clean 39(5):491–501. https://doi.org/10.1002/clen.201000065
  • 36. Sensoy S, Türkoğlu N, Akçakaya A, Ulupınar Y, Ekici M, Demircan M, Atay H, Tüvan A, Demirbaş H (2013) Trends in Turkey climate indices from 1960 to 2010, 6th Atmospheric Science Symposium, 24–26 April 2013. ITU, Istanbul
  • 37. Şensoy, S., Kömüşçü, A.,Ü.,Türkoğlu, N.,Çiçek, İ., Esentürk, H., (2019) Trends in sectoral climate indices for Istanbul, 9 th International symposium on atmospheric sciences (ATMOS 2019)
  • 38. Shiferaw A, Tadesse T, Rowe C, Oglesby R (2018) Precipitation extremes in dynamically downscaled climate scenarios over the greater horn of Africa. Atmosphere 9(3):112. https://doi.org/10.3390/atmos9030112
  • 39. Sırdaş S, Sen Z (2003) Spatio-temporal drought analysis in the Trakya region. Turkey Hydrol Sci J 48(5):809–820. https://doi.org/10.1623/hysj.48.5.809.51458
  • 40. Tokgöz S, Partal T (2020) Karadeniz Bölgesinde Yıllık Yağış ve Sıcaklık Verilerinin Yenilikçi Şen ve Mann-Kendall Yöntemleri ile Trend Analizi. J Inst Sci Technol 10(2):1107–1118. https://doi.org/10.21597/jist.633368
  • 41. Toros H (2012) Spatio-temporal precipitation change assessments over Turkey. Int J Climatol 32(9):1310–1325. https://doi.org/10.1002/joc.2353
  • 42. Türkes M (2012) Türkiye’de gözlenen ve öngörülen iklim değişikliği, kuraklık ve çölleşme. Ankara Üniversitesi Çevrebilimleri Dergisi 4(2):1–32. https://doi.org/10.1501/Csaum_0000000063
  • 43. Wang XL, Feng Y (2013) RHtests_dlyPrcp user manual. Climate research division atmospheric science and technology directorate science and technology branch environment Canada, Toronto
  • 44. Wang Y, Liu G, Guo E (2019) Spatial distribution and temporal variation of drought in Inner Mongolia during 1901–2014 using standardized precipitation evapotranspiration index. Sci Total Environ 654:850–862. https://doi.org/10.1016/j.scitotenv.2018.10.425
  • 45. WMO Guidelines on the Calculation of Climate Normals (2017) World meteorological organization, Geneva, Switzerland
  • 46. Yazid M, Humphries U (2015) Regional observed trends in daily rainfall indices of extremes over the Indochina Peninsula from 1960 to 2007. Climate 3(1):168–192. https://doi.org/10.3390/cli3010168
  • 47. Yilmaz AG (2015) The effects of climate change on historical and future extreme rainfall in Antalya. Turkey Hydrol Sci J 60(12):2148–2162. https://doi.org/10.1080/02626667.2014.945455
  • 48. Zhang X, Yang F (2004) RClimDex user manual. Climate research branch, Ontario
  • 49. Zhang X, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim Change 2(6):851–870. https://doi.org/10.1002/wcc.147
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-befa7ade-8607-480d-8bb4-8ac2be8b5e31
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.