PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Aging kinetics and mechanical properties of copper-bearing low-carbon HSLA-100 microalloyed steel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The precipitation kinetics of HSLA-100 steel and the correlation between tensile and impact properties were studied. According to the modified Johnson–Mehl–Avrami–Kolmogorov (JMAK) analysis and based on the analysis of the time corresponding to the transformed fraction of 0.5 (t0.5), the activation energy for the precipitation of copper during aging of martensite was determined as ~111 and 105 kJ/mol, respectively. These values are much smaller than the activation energy for the diffusion of Cu in a-iron, which was related to the effect of high dislocation density of the quenched martensitic microstructure on the aging process. These results were verified based on the diffusional calculations. Based on the analysis of mechanical behavior, no reasonable correlation was found between strength of the material and the impact energy. However, the impact energy was found to be propor-tional to the UTS-YS, where the latter is an indicator of the work-hardening capability of the material. This revealed that the work-hardening capacity of the material is a much more important factor for determining the impact toughness compared to its strength.
Rocznik
Strony
1409--1418
Opis fizyczny
Bibliogr. 27 poz., rys., wykr.
Twórcy
  • School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
autor
  • School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
  • School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
  • School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
autor
  • School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
Bibliografia
  • [1] S.K. Dhua, A. Ray, D.S. Sarma, Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels, Mater. Sci. Eng. A 318 (2001) 197–210.
  • [2] R.D.K. Misra, Z. Jia, R. O'Malley, S.J. Jansto, Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: the effect on mechanical properties, Mater. Sci. Eng. A 528 (29-30) (2011) 8772–8780.
  • [3] D. Palanisamy, P. Senthil, V. Senthilkumar, The effect of aging on machinability of 15Cr–5Ni precipitation hardened stainless steel, Arch. Civ. Mech. Eng. 16 (2016) 53–63.
  • [4] S.K. Dhua, D. Mukerjee, D.S. Sarma, Influence of thermomechanical treatments on the microstructure and mechanical properties of HSLA-100 steel plates, Metall. Mater. Trans. A 34 (2003) 241–253.
  • [5] P.K. Ray, R.I. Ganguly, A.K. Panda, Optimization of mechanical properties of an HSLA-100 steel through control of heat treatment variables, Mater. Sci. Eng. A 346 (1-2) (2003) 122–131.
  • [6] R. Bogucki, S.M. Pytel, Influence of molybdenum addition on mechanical properties of low carbon HSLA-100 steel, Arch. Metall. Mater. 59 (2014) 859–864.
  • [7] A.R. Hosseini Far, S.H. Mousavi Anijdan, S.M. Abbasi, The effect of increasing Cu and Ni on a significant enhancement of mechanical properties of high strength low alloy, low carbon steels of HSLA- 100 type, Mater. Sci. Eng. A 746 (2019) 384–393.
  • [8] M. Mujahid, A.K. Lis, C.I. Garcia, A.J. DeArdo, HSLA-100 steels: influence of aging heat treatment on microstructure and properties, J. Mater. Eng. Perform. 7 (1998) 247–257.
  • [9] S.W. Thompson, Interrelationships between yield strength, low-temperature impact toughness, and microstructure in low-carbon, copper-precipitation-strengthened, high-strength low-alloy plate steels, Mater. Sci. Eng. A 711 (2018) 424–433.
  • [10] Y. Liu, L. Shi, C. Liu, L. Yu, L. Yu, Z. Yan, H. Li, Effect of step quenching on microstructures and mechanical properties of HSLA steel, Mater. Sci. Eng. A 675 (2016) 371–378.
  • [11] A.N. Bhagat, S.K. Pabi, S. Ranganathan, O.N. Mohanty, Aging behavior in copper bearing high strength low alloy steels, Isij Int. 44 (1) (2004) 115–122.
  • [12] I. Schindler, J. Kopecek, P. Kawulok, M. Jablonska, E. Hadasik, P. Józwik, P. Opela, P. Hanus, W. Polkowski, Z. Bojar, Kinetics of static recrystallization in the coarse-grained Fe–40 at.% Al– Zr–B alloy, Arch. Civ. Mech. Eng. 17 (2017) 816–826.
  • [13] G.R. Speich, W.C. Leslie, Tempering of steel, Metall. Trans. 3 (1972) 1043–1054.
  • [14] H. Mirzadeh, A. Najafizadeh, Aging kinetics of 17-4 PH stainless steel, Mater. Chem. Phys. 116 (2009) 119–124.
  • [15] G. Krauss, Steels Processing, Structure, and Performance, second edition, ASM International, Ohio, 2015.
  • [16] E.C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1940.
  • [17] S. Krajewski, J. Nowacki, Dual-phase steels microstructure and properties consideration based on artificial intelligence techniques, Arch. Civ. Mech. Eng. 14 (2014) 278–286.
  • [18] M. Perek-Nowak, G. Boczkal, Formation of transition phases on Interface between monocrystalline Fe and cu due to mutual solid-state diffusion, Arch. Metall. Mater. 61 (2016) 581–586.
  • [19] G. Salje, M. FellerKniepmeier, The diffusion and solubility of copper in iron, J. Appl. Phys. 48 (1977) 1833–1839.
  • [20] U.K. Viswanathan, P.K.K. Nayar, R. Krishnan, Kinetics of precipitation in 17–4 PH stainless steel, Mater. Sci. Technol. 5 (1989) 346–349.
  • [21] M. Opiela, A. Grajcar, Hot deformation behavior and softening kinetics of Ti–V–B microalloyed steels, Arch. Civ. Mech. Eng. 12 (2012) 327–333.
  • [22] R. Adelfar, H. Mirzadeh, A. Ataie, M. Malekan, Amorphization and mechano-crystallization of high-energy ball milled Fe-Ti alloys, J. Non. Solids 520 (2019) 119466.
  • [23] M. Rafiei, H. Mirzadeh, M. Malekan, M.J. Sohrabi, Solidification behavior and Laves phase dissolution during homogenization heat treatment of Inconel 718 superalloy, J. Alloys. Compd. 793 (2019) 277–282.
  • [24] M. Nouroozi, H. Mirzadeh, M. Zamani, Effect of microstructural refinement and intercritical annealing time on mechanical properties of high-formability dual phase steel, Mater. Sci. Eng. A 736 (2018) 22–26.
  • [25] S. Nikkhah, H. Mirzadeh, M. Zamani, Fine tuning the mechanical properties of dual phase steel via thermomechanical processing of cold rolling and intercritical annealing, Mater. Chem. Phys. 230 (2019) 1–8.
  • [26] M. Razzaghi, H. Mirzadeh, M. Emamy, Unraveling the effects of Zn addition and hot extrusion process on the microstructure and mechanical properties of as-cast Mg–2Al magnesium alloy, Vacuum 167 (2019) 214–222.
  • [27] S. Kheiri, H. Mirzadeh, M. Naghizadeh, Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing, Mater. Sci. Eng. A 759 (2019) 90–96.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bef1a2eb-3b7d-4911-8732-b877c4854fe7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.