PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physical Ergodicity and Exact Response Relations for Low-dimensional Maps

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, novel ergodic notions have been introduced in order to find physically relevant formulations and derivations of fluctuation relations. These notions have been subsequently used in the development of a general theory of response, for time continuous deterministic dynamics. The key ingredient of this theory is the Dissipation Function , that in nonequilibrium systems of physical interest can be identified with the energy dissipation rate, and that is used to determine exactly the evolution of ensembles in phase space. This constitutes an advance compared to the standard solution of the (generalized) Liouville Equation, that is based on the physically elusive phase space variation rate. The response theory arising in this framework focuses on observables, rather than on details of the dynamics and of the stationary probability distributions on phase space. In particular, this theory does not rest on metric transitivity, which amounts to standard ergodicity. It rests on the properties of the initial equilibrium, in which a system is found before being perturbed away from that state. This theory is exact, not restricted to linear response, and it applies to all dynamical systems. Moreover, it yields necessary and sufficient conditions for relaxation of ensembles (as in usual response theory), as well as for relaxation of single systems. We extend the continuous time theory to time discrete systems, we illustrate our results with simple maps and we compare them with other recent theories.
Twórcy
autor
  • Dipartimento di Scienze Matematiche, Politecnico di Torino
  • Graphene@PoliTO Lab, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
  • INFN, Sezione di Torino, Via P. Giuria 1, I-10125, Torino, Italy
  • MICEMS, Universiti Putra Malaysia, 43400 Serdang Selangor, Malaysia
autor
  • Dipartimento di Scienze Matematiche, Politecnico di Torino
Bibliografia
  • [1] B. Cessac, J.-A. Sepulchre, Linear response, susceptibility and resonances in chaotic toy models. Physica D 225, 13 (2007).
  • [2] D. Ruelle, Differentiation of SRB states. Comm. Math. Phys. 187, 227-241 (1997).
  • [3] D. Ruelle, General linear response formula in statistical mechanics, and the fluctuation dissipation theorem far from equilibrium. Phys. Lett. A 245, 220-224 (1998).
  • [4] M. Pollicott, On the rate of mixing of Axiom A flows, Invent. Math. 81, 413-426 (1985).
  • [5] D. Ruelle, One-dimensional Gibbs states and axom a diffeomorphisms, J. Differential Geom. 25, 117-137 (1987)
  • [6] M. Colangeli, L. Rondoni, A. Vulpiani, Fluctuationdissipation relation for chaotic non-Hamiltonian systems. J. Stat. Mech. L04002 (2012).
  • [7] D.J. Evans, L. Rondoni, Comments on the Entropy of Nonequilibrium Steady States. J. Stat. Phys. 109, 895 (2002).
  • [8] G. Boffetta, G. Lacorata, S. Musacchio, A. Vulpiani, Relaxation of finite perturbations: beyond the fluctuation dissipation relation. Chaos 13, 3 (2003).
  • [9] U. Marini Bettolo Marconi, A. Puglisi, L. Rondoni, A. Vulpiani, Fluctuation-dissipation: Response theory in statistical physics. Physics Reports 461, 111-195 (2008).
  • [10] F. Bonetto, A. Kupiainen, J.L. Lebowitz, Absolute continuity of projected SRB measures of coupled Arnold cat map lattices, Ergod. Th. Dyn. Syst. 25, 59 (2005).
  • [11] D.J. Evans, S.R. Williams, D.J. Searles, L. Rondoni, On the relaxaton to nonequilibrium steady states (submitted).
  • [12] L. Rondoni, A. Verderosa, t-mixing: from Fluctuation Relations to Response and Irreversibility in MD, Molecular Simulation (in press).
  • [13] P.K. Patra , Wm.G. Hoover, C.G. Hoover, J. Clinton Sprott, The Equivalence of Dissipation from Gibbs’ Entropy Production with Phase-Volume Loss in Ergodic Heat-Conducting Oscillators, arXiv:1511.03201 [cond-mat.stat-mech].
  • [14] D.J. Evans, E.G.D. Cohen, G.P. Morris, Probability of second law violations in shearing steady flows, Phys. Rev. Lett. 71, 2401 (1993).
  • [15] D.J. Evans, D.J. Searles, The fluctuation theorem, Adv. Phys. 52, 1529 (2002).
  • [16] D.J. Searles, L. Rondoni, D.J. Evans, The steady state fluctuation relation for the dissipation function, J. Stat. Phys. 128, 1337 (2007).
  • [17] D.J. Evans, D.J. Searles, S.R.Williams, Fundamentals of Classical Statistical Thermodynamics: Dissipation, Relaxation and Fluctuation Theorems, Wiley, New York 2016.
  • [18] P. Gaspard, Chaos, Scattering and Statistical Mechanics, Cambridge University Press, Cambridge 2005.
  • [19] E.G.D. Cohen, L. Rondoni, Particles, maps and irreversible thermodynamics, Physica A 306, 117 (2001).
  • [20] M. Falcioni M et al. Initial growth of Boltzmann entropy and chaos in a large assembly of weakly interacting systems, Physica A 385, 170 (2007).
  • [21] L. Rondoni, S. Pigolotti, On Gamma- and mu-space descriptions: Gibbs and Boltzmann entropies of symplectic coupled maps, Phys. Scripta 86, 058513 (2012).
  • [22] D.J. Evans, E.G.D. Cohen, D.J. Searles, F. Bonetto, Note on the Kaplan-Yorke dimension and linear transport coefficients, J. Stat. Phys. 101, 17 (2000).
  • [23] D.J. Evans, D.J. Searles, L. Rondoni, Application of the Gallavotti-Cohen fluctuation relation to thermostated steady states near equilibrium, Phys. Rev. E 71, 056120 (2005).
  • [24] G. Gallavotti, E.G.D. Cohen, Dynamical ensambles in stationary states, J. Stat. Phys. 80, 931 (1995).
  • [25] G. Gallavotti, Reversible Anosov diffeomorfisms, large deviations, Math. Phys. Electronic. J. 1, 1 (1995).
  • [26] D.J. Evans, D.J. Searles, Equilibrium microstates which generate second law violating steady states, Phys. Rev. E 50, 1645 (1994).
  • [27] D.J. Evans, D.J, Searles, Steady states, invariant measures, response theory, Phys. Rev. E 52, 5839 (1995).
  • [28] L. Rondoni, C. Mejía-Monasterio, Fluctuations in nonequilibrium statistical mechanics: models, mathematical theory, physical mechanisms, Nonlinearity 20, R1 (2007).
  • [29] M. Colangeli, L. Rondoni, A. Verderosa, Focus on some nonequilibrium issues. Chaos, Solitons and Fractals 64, 2 (2014).
  • [30] D.J. Evans, D.J. Searles, S.R. Williams, On the fluctuation theorem for the dissipation function and its connection with response theory, J. Chem. Phys. 128, 014504 (2008).
  • [31] P. Adamo, M. Colangeli, L. Rondoni, Role of ergodicity in the transient fluctuation relation and a new relation for a dissipative non-chaotic map. Chaos, Solitons and Fractals (in press)
  • [32] Wm.G. Hoover, H.A. Posch, Chaos and irreversibility in simple model systems, Chaos 8(2), 366-373 (1998).
  • [33] S. Tasaki, T. Gilbert, J.R. Dorfman, An analytical construction of the SRB measures for Baker-type maps, Chaos 8(2), 424-443 (1998).
  • [34] J.L. Lebowitz, Boltzmann’s entropy and time’s arrow, Physics today 46, 32 (1993).
  • [35] L. Cerino,F. Cecconi, M. Cencini, A. Vulpiani, The role of the number of degrees of freedom and chaos in macroscopic irreversibility. Physica A 442, 486-497 (2016).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bee8be57-247f-486c-90fb-1ee7630c5a2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.