PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On Secrecy Performance for Energy-Harvesting Multi-Antenna Relaying Networks with a Dual-Use Source

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper studies the secrecy performance of an energy-harvesting relaying system in the presence of a dualuse source node and an eavesdropper. Specifically, the source has dual roles in the dual-hop communication: 1) to transmit confidential information in the first hop; 2) to generate jamming signal to interfere the eavesdropper in the second hop. Moreover, the multi-antenna relay deploys a power-splitting harvesting scheme to coordinate the information receiving and energy harvesting, and adopts maximal ratio combining technique to process the multiple copies of signals. Considering decode-andforward protocol and transmit antenna selection scheme, we derive an analytical expression for secrecy outage probability, and perform Monte Carlo simulation to validate the analysis. Analytical results show that the SOP performance with the dualuse source node can be effectively improved when the relaydestination channel does not have absolute advantage over the relay-eavesdropper channel.
Twórcy
autor
  • Key Laboratory of Networks and Cloud Computing Security of Universities in Chongqing, School of Electronic and Information Engineering, Southwest University, Chongqing, 400715, P. R. China
autor
  • Key Laboratory of Networks and Cloud Computing Security of Universities in Chongqing, School of Electronic and Information Engineering, Southwest University, Chongqing, 400715, P. R. China
autor
  • Key Laboratory of Networks and Cloud Computing Security of Universities in Chongqing, School of Electronic and Information Engineering, Southwest University, Chongqing, 400715, P. R. China
Bibliografia
  • [1] L. Dong, Z. Han, A. P. Petropulu, and H. V. Poor, “Improving wireless physical layer security via cooperating relays,” IEEE Trans. Sig. Proc., vol. 58, no. 3, pp. 1875-1888, Mar. 2010.
  • [2] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Effcient protocols and outage behavior,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.
  • [3] A. El Shafie, A. Sultan, and N. Al-Dhahir, “Physical-layer security of a buffer-aided full-duplex relaying System,” IEEE Commun. Lett., vol. 20, no. 9, pp. 1856-1859, Sept. 2016.
  • [4] L. Wang, Y. Cai, Y. Zou, W. Yang, and L. Hanzo, “Joint relay and jammer selection improves the physical layer security in the face of CSI feedback delays,” IEEE Trans. Veh. Technol., vol. 65, no. 8, pp. 6259-6274, Aug. 2016.
  • [5] J. Zhang and G. Pan, “Secrecy outage analysis with Kth best relay selection in dual-hop inter-vehicle communication systems,” AEU-Int. J. Electron. Commun., vol. 71, pp. 139-148, Jan. 2017.
  • [6] T. R. Ramya and S. Bhashyam, “Using delayed feedback for antenna selection in MIMO systems,” IEEE Trans. Wireless Commun., vol. 8, no. 12, pp. 6059-6067, Dec. 2009.
  • [7] S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor nodes: Survey and implications,” IEEE Commun. Surveys & Tutorials, vol. 13, no. 3, pp. 443-461, Third Quart. 2011.
  • [8] M.-L. Ku, W Li, Y. Chen, and K. J. R. Liu, “Advances in energy harvesting communications: Past, present, and future challenges,” IEEE Commun. Surveys & Tutorials, vol. 18, no. 3, pp. 1384-1412, Second Quart. 2016.
  • [9] J. Kang, R. Yu, S. Maharjan, Y. Zhang, X. Huang, S. Xie, H. Bogucka, and S. Gjessing, “Toward secure energy harvesting cooperative networks,” IEEE Commun. Mag., vol. 53, no. 8, pp. 114-121, Aug. 2015.
  • [10] H. Gao, T. Lv, W. Wang, and N. C. Beaulieu, “Energy-efficient and secure beamforming for self-sustainable relay-aided multicast networks,” IEEE Sig. Proc. Lett., vol. 23, no. 11, pp. 1509-1513, Nov. 2016.
  • [11] H. Xing, K.-K Wong, Z. Chu, and A. Nallanathan, “To harvest and jam: A paradigm of self-sustaining friendly jammers for secure AF relaying,” IEEE Trans. Sig. Proc., vol. 63, no. 24, pp. 6616-6631, Dec. 2015.
  • [12] G. Zhang, X. Li, M. Cui, G. Li, and L. Yang, “Signal and artificial noise beamforming for secure simultaneous wireless information and power transfer multiple-input multiple output relaying systems,” IET Commun., vol. 10, no. 7, pp. 796-804, Jul. 2016.
  • [13] S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE Trans. Wire. Commun., vol. 7, no. 6, pp. 2180-2189, June 2008.
  • [14] Q. Li, Q. Zhang, and J. Qin, “Secure relay beamforming for SWIPT in amplify-and-forward two-way relay networks,” IEEE Trans. Veh. Technol., vol. 65, no. 11, pp. 9006-9019, Nov. 2016.
  • [15] Q. Li, W.-K Ma, and D. Han, “Sum secrecy rate maximization for full-duplex two-way relay networks using Alamouti-based rank-two beamforming,” IEEE J. Sel. Areas Commun., vol. 10, no. 8, pp. 1359-1374, Dec. 2016.
  • [16] Q. Li and J. Qin, “Joint source and relay secure beamforming for nonregenerative MIMO relay systems with wireless information and power transfer,” IEEE Trans. Veh. Technol., doi: 10.1109/TVT.2016.2633380.
  • [17] B. Li, Z. Fei, and H. Chen, “Robust artificial noise-aided secure beamforming in wireless-powered non-regenerative relay networks,” IEEE Access, vol. 4, pp. 7921-7929, Nov. 2016.
  • [18] H. Xing, K.-KWong, A. Nallanathan, and R. Zhang, “Wireless powered cooperative jamming for secrecy multi-AF relaying networks,” IEEE Trans. Wire. Commun., vol. 15, no. 12, pp. 7971-7984, Dec. 2016.
  • [19] H. Guo, Z. Yang, L. Zhang, J. Zhu, and Y. Zou, “Powerconstrained secrecy rate maximization for joint relay and jammer selection assisted wireless networks,” IEEE Trans. Commun., doi: 10.1109/TCOMM.2017.2651066.
  • [20] M. Zhao, X. Wang, and S. Feng, “Joint power splitting and secure beamforming design in the multiple non-regenerative wireless-powered relay networks,” IEEE Commun. Lett., vol. 19, no. 9, pp. 1540-1543, Sep. 2015.
  • [21] A. Salem, K. A. Hamdi, and K. M. Rabie, “Physical layer security with RF energy harvesting in AF multi-antenna relaying networks,” IEEE Trans. Commun., vol. 64, no. 7, pp. 3025-3038, July 2016.
  • [22] C. Zhong, H. A. Suraweera, G. Zheng, I. Krikidis, and Z. Zhang, “Wireless information and power transfer with full duplex relaying,” IEEE IEEE Trans. Commun., vol. 62, no. 10, pp. 3447-3461, Oct. 2014.
  • [23] I. Krikidis, G. Zheng, and B. Ottersten, “Harvest-use cooperative networks with half/full-duplex relaying,” in Proc. IEEE WCNC, Shanghai, China, Apr. 2013, pp. 4256-4260.
  • [24] K. Ishibashi, C. K. Ho, and I. Krikidis, “Diversity-multiplexing tradeoff of dynamic harvest-and-forward cooperation,” IEEE Wireless Commun. Lett., vol. 4, no. 6, pp. 633-636, Dec. 2015.
  • [25] Y. Chen, “Energy harvesting AF relaying in the presence of interference and Nakagami-m fading,” IEEE Trans. Wireless Commun., vol. 15, no. 2, pp. 1008-1017, Feb. 2016.
  • [26] J. G. Proakis, Digital Communications, 4th Ed., McGraw-Hill, 2001.
  • [27] G. Pan and C. Tang, “Outage performance on threshold AF and DF relaying schemes in simultaneous wireless information and power transfer systems,” AEU-Int. J. Electron. Commun., vol. 71, pp. 175-180, Jan. 2017.
  • [28] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th Ed., Elsevier, 2007.
  • [29] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes, 4th Ed., McGraw-Hill, 2001.
  • [30] A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Chanllenges and opportunities,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1637-1652, Sep. 2014.
Uwagi
1. This work is supported by the National High-Tech R&D Program of China (No. 2015AA016304) and the Fundamental Research Funds for the Central Universities of China (No. XDJK2016A011).
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bee567aa-d841-4682-a0f3-29c9d008d4f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.