PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrowetting-based beam scanner with controllable field of view

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A beam scanner based on electrowetting with controllable field of view is designed. Depending on the first-order paraxial approximation, the scanning path and scanning radius of the beam scanner are derived. Its physical model and properties are established and analyzed with the help of by using the COMSOL and MATLAB. The results show that the scanning beam emitting from the beam scanner realizes 360° scanning freely, and its controllable field of view varies from 0 to 65.3 m successfully under the action of working voltage. The two liquid interfaces in the beam scanner can rotate clockwise or counterclockwise independently, and their inclination angle ranges from 0° to 45°. When the two liquid interfaces turn in the same direction, the scanning effect of edge field is better than that of the central zone. While the scanning effect of the central area is greatly improved and better than that of the edge field when the two liquid interfaces turn in the different direction. In addition, the rotation frequencies of the two interfaces affect the performance of the beam scanner.
Czasopismo
Rocznik
Strony
655--665
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
  • Center of Optofluidic Technology, College of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
autor
  • Center of Optofluidic Technology, College of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
autor
  • National Astronomical Observatories/Nanjing Institute of Astronomical Optics & Technology, Chinese Academy of Sciences, Nanjing 210042, China
  • CAS Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology, Nanjing 210042, China
autor
  • Center of Optofluidic Technology, College of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
  • Center of Optofluidic Technology, College of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Bibliografia
  • [1] ZHANG H., YUAN Y., SU L., HUANG F., Beam steering uncertainty analysis for Risley prisms based on Monte Carlo simulation, Optical Engineering 56(1), 2017: 014105. https://doi.org/10.1117/1.OE.56.1.014105
  • [2] LI J., CHEN K., PENG Q., WANG Z., JIANG Y., FU C., REN G., Improvement of pointing accuracy for Risley prisms by parameter identification, Applied Optics 56(26), 2017: 7358-7366. https://doi.org/10.1364/AO.56.007358
  • [3] SONG D., CHANG J., ZHAO Y., ZHAO Q., Risley prisms scanning optical imaging system using liquid crystal spatial light modulator, Current Optics and Photonics 3(3), 2019: 215-219. https://doi.org/10.3807/COPP.2019.3.3.215
  • [4] KUMAR K., AVRITSCHER R., WANG Y., LANE N., MADOFF D.C., YU T.K., YU T.-K., ZHANG X., Handheld histology-equivalent sectioning laser-scanning confocal optical microscope for interventional imaging, Biomedical Microdevices 12(2), 2010: 223-233. https://doi.org/10.1007/S10544-009-9377-6
  • [5] LAI S.F., LEE C.C., Double-wedge prism scanner for application in thermal imaging systems, Applied Optics 57(22), 2018: 6290-6299. https://doi.org/10.1364/AO.57.006290
  • [6] LI A., LI Q., DENG Z., ZHANG Y., Risley-prism-based visual tracing method for robot guidance, Journal of the Optical Society of America A 37(4), 2020: 705-713. https://doi.org/10.1364/JOSAA.381445
  • [7] CLEMENT C.E., THIO S.K., PARK S.Y., An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD), Sensors and Actuators B: Chemical 240, 2017: 909-915. https://doi.org/10.1016/J.SNB.2016.08.125
  • [8] LIU C., WANG D., WANG Q.H., XING Y., Multifunctional optofluidic lens with beam steering, Optics Express 28(5), 2020: 7734-7745. https://doi.org/10.1364/OE.388810
  • [9] KOPP D., LEHMANN L., ZAPPE H., Optofluidic laser scanner based on a rotating liquid prism, Applied Optics 55(9), 2016: 2136-2142. https://doi.org/10.1364/AO.55.002136
  • [10] SUPEKAR O.D., OZBAY B.N., ZOHRABI M., NYSTROM P.D., FUTIA G.L., RESTREPO D., GIBSON E.A., GOPINATH J.T., BRIGHT V.M., Two-photon laser scanning microscopy with electrowetting-based prism scanning, Biomedical Optics Express 8(12), 2017: 5412-5426. https://doi.org/10.1364/BOE.8.005412
  • [11] LIM W.Y., ZOHRABI M., GOPINATH J.T., BRIGHT V.M., Calibration and characteristics of an electrowetting laser scanner, IEEE Sensors Journal 20(7), 2019: 3496-3503. https://doi.org/10.1109/JSEN.2019.2959792
  • [12] CHENG J., CHEN C.L., Adaptive beam tracking and steering via electrowetting-controlled liquid prism, Applied Physics Letters 99(19), 2011: 191108. https://doi.org/10.1063/1.3660578
  • [13] SMITH N.R., ABEYSINGHE D.C., HAUS J.W., HEIKENFELD J., Agile wide-angle beam steering with electrowetting microprisms, Optics Express 14(14), 2006: 6557-6563. https://doi.org/10.1364/OE.14.006557
  • [14] HORNG J.S., LI Y., Error sources and their impact on the performance of dual-wedge beam steering systems, Applied Optics 51(18), 2012: 4168-4175. https://doi.org/10.1364/AO.51.004168
  • [15] ZHANG W.J., ZHAO R., KONG M.M., CHEN T., GUAN J.F., LIANG Z.C., Simulation of beam steering control in arrayed liquid prisms system based on electrowetting-on-dielectric, Optoelectronics Letters 16(5), 2020: 321-326. https://doi.org/10.1007/S11801-020-9167-1
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bee401a9-6cd4-48e1-a2ec-246d71157e13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.