PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Study of a Protective Container for Combined Blast, Fragmentation and Thermal Effects from Energetic Materials Detonation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A composite protective container is experimentally investigated to counter combined blast, fragmentation and thermal effects from either a 1.0 kg bare or 0.6 kg cased (pipe-bomb) TNT equivalent charge. Commercially available shaving foam was used as the internal filling material. The shaving foam quenched the initial fireball and afterburning reactions. The composite case contained the blast overpressure and prevented the escape of primary fragments. The novel combination of extended polystyrene (EPS) foam, bakelite and polyurethane (PU)-silica composite employed at the container base provided protection against in-contact explosive detonation. Maximum peak reflected overpressure of 86.87 kPa (12.6 psi) was measured at 1.0 m distance for 1.0 kg TNT equivalent charge detonation inside the container. The protective container provided 97% peak overpressure reduction compared to the equivalent surface burst detonation. The fragmentation and their impact on container were simulated using a coupled SPH-ALE approach. Steel casing fragments weighing up to 8.0 g with velocities in the range of 1260-1550 m/s were produced and impacted the container. This investigation provides a basis in the design of a device to combat terrorist devices in public places, high profile meeting venues and transportation systems.
Słowa kluczowe
Rocznik
Strony
135--157
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • National University of Sciences and Technology, Islamabad, PC 44000, Pakistan
  • National University of Sciences and Technology, Islamabad, PC 44000, Pakistan
Bibliografia
  • [1] Zipf, R.K.; Cashdollar, K.L. Effects of Blast Pressure on Structures and the Human Body. [retrieved at http://citeseerx.ist.psu.edu/viewdoc/ summary?doi=10.1.1.691.7547].
  • [2] Rutter, B. Pressure versus Impulse Graph for Blast-induced Traumatic Brain Injury and Correlation to Observable Blast Injuries. Doctoral Dissertation, Missuori University of Science and Technology, US, 2019.
  • [3] Peters, P. Primary Blast Injury: An Intact Tympanic Membrane Does Not Indicate the Lack of a Pulmonary Blast Injury. Mil. Med. 2011, 176(1): 110-114.
  • [4] Ahmed, K.; Malik, A.Q. Experimental Studies on Blast Mitigation Capabilities of Conventional Dry Aqueous Foam. AIP Adv. 2020, 10(6), paper 065130: 1-19.
  • [5] Gelfand, B.; Silnikov, M.; Chernyshov, M. On the Efficiency of Semi-closed Blast Inhibitors. Shock Waves 2010, 20(4): 317-321.
  • [6] Silnikov, M.; Mikhailin, A.; Vasiliev, N.; Ermolaev, V.; Shishkin, V. Liquid Blast Inhibitors: Technology and Application. In: Detection and Disposal of Improvised Explosives. (Schubert, H.; Kuznetsov, A., Eds.) NATO Secur. Sci., Vol. 6, Springer, Dordrecht, 2006, pp. 97-103.
  • [7] Silnikov, M.; Sadyrin, A.; Mikhaylin, A.; Orlov, A. Shock Wave Overpressure Evaluation at Blast Detonation Inside a Destructible Container. Mater. Phys. Mech. 2014, 20(2): 175-185.
  • [8] Takayama, K.; Silnikov, М.; Chernyshov, M. Experimental Study of Blast Mitigating Devices Based on Combined Construction. Acta Astronaut. 2016, 126: 541-545.
  • [9] Ramadhan, A.; Talib, A.A.; Rafie, A.M.; Zahari, R. High Velocity Impact Response of Kevlar-29/Epoxy and 6061-T6 Aluminum Laminated Panels. Mater. Des. 2013, 43: 307-321.
  • [10] Alogla, A.; Helal, M.; ElShafey, M.M.; Fathallah, E. Numerical Analysis for Critical Structures Protection against Blast Loading Using Metallic Panels. Appl. Sci. 2020, 10(6), paper 2121: 1-18.
  • [11] Elshenawy, T.; Abdo, G.; Aboelseoud, M. Ballistic Protection of Military Shelters from Mortar Fragmentation and Blast Effects using a Multi-layer Structure. Def. Sci. J. 2019, 69: 531-626.
  • [12] Sun, G.; Wang, E.; Zhang, J.; Li, S.; Zhang, Y.; Li, Q. Experimental Study on the Dynamic Responses of Foam Sandwich Panels with Different Facesheets and Core Gradients Subjected to Blast Impulse. Int. J. Impact Eng. 2020, 135, paper 103327: 1-20.
  • [13] Bornstein, H.; Di Placido, S.; Ryan, S.; Orifici, A.C.; Mouritz, A.P. Effect of Standoff on Near-Field Blast Mitigation Provided by Water-Filled Containers. J. Appl. Mech. 2019, 86(7), paper 071003: 1-10.
  • [14] Langdon, G.S.; Kriek, S.; Nurick, G.N. Influence of Venting on the Response of Scaled Aircraft Luggage Containers Subjected to Internal Blast Loading. Int. J. Impact Eng. 2020, 141, paper 103567: 1-15.
  • [15] Qi, C.; Remennikov, A.; Pei, L.-Z.; Yang, S.; Yu, Z.-H.; Ngo, T.D. Impact and Closein Blast Response of Auxetic Honeycomb-cored Sandwich Panels: Experimental Tests and Numerical Simulations. Compos. Struct. 2017, 180: 161-178.
  • [16] Liverts, M. Shock Wave Interaction with Aqueous Particulate Foams. Ben-Gurion University of the Negev, 2012.
  • [17] Liverts, M.; Ram, O.; Sadot, O.; Apazidis, N.; Ben-Dor, G. Mitigation of Exploding-Wire-generated Blast-waves by Aqueous Foam. Phys. Fluids 2015, 27(7): 076103.
  • [18] Sembian, S.; Liverts, M.; Apazidis, N. Attenuation of Strong External Blast by Foam Barriers. Phys. Fluids 2016, 28(9): 096105.
  • [19] Del Prete, E.; Chinnayya, A.; Domergue, L.; Hadjadj, A.; Haas, J.-F. Blast Wave Mitigation by Dry Aqueous Foams. Shock Waves 2013, 23(1): 39-53.
  • [20] Panczak, T.D.; Krier, H.; Butler, P.B. Shock Propagation and Blast Attenuation through Aqueous Foams. J. Hazard. Mater. 1987, 14(3): 321-336.
  • [21] Hartman, W.F.; Larsen, M.E.; Boughton, B.A. Blast Mitigation Capabilities of Aqueous Foam. Sandia National Laboratories, Report SAND2006-0533, 2006.
  • [22] Hyde, D. CONWEP: Conventional Weapons Effects Program. US Army Engineer Waterways Experiment Station, USA, 1991.
  • [23] Ahmed, K.; Malik, A.Q. Experimental Investigations of the Response of a Portable Container to Blast, Fragmentation, and Thermal Effects of Energetic Materials Detonation. Int. J. Protective Struct. 2022, 13(1): 45-64.
  • [24] Ahmed, K.; Malik, A.Q.; Hussain, A.; Ahmad, I.R.; Ahmad, I. Lightweight Protective Configurations Against Blast and Fragments Impact: Experimental and Numerical Studies. AIP Adv. 2020, 10(9): 095221.
  • [25] Century Dynamics. Release 14.0 Documentation for ANSYS AUTODYN. ANSYS Inc., US, 2011.
  • [26] Lee, E.; Hornig, H.; Kury, J. Adiabatic Expansion of High Explosive Detonation Products UCRL-50422, University of California, California, 1968.
  • [27] Kravets, V.; Zakusylo, R.; Sydorenko, Y.; Shukurov, A.; Sałaciński, T.; Zakusylo, D. Regularities of the Energy of Formation Field in the Explosion of a Conical Charge. Cent. Eur. J. Energ. Mater. 2019, 16(4): 533-546.
  • [28] Meyers, M.A. Dynamic Behavior of Materials. John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore, 1994; ISBN 0-471-58262-X.
  • [29] Johnson, G.R.; Cook, W.H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperatures. Proc. 7th Int. Symp. Ballistics, Hague, 1983.
  • [30] Murugesan, M.; Jung, D.W. Johnson Cook Material and Failure Model Parameters Estimation of AISI-1045 Medium Carbon Steel for Metal Forming Applications. Materials 2019, 12(4): 609.
  • [31] Johnson, G.R.; Holmquist, T.J. An Improved Computational Constitutive Model for Brittle Materials. AIP Conf. Proc., American Institute of Physics, 1994.
  • [32] Ahmed, K.; Malik, A.Q.; Ahmad, I.R. Heterogeneous Lightweight Configuration for Protection Against 7.62×39 mm Bullet Impact. Int. J. Protective Structures 2019, 10(3): 289-305.
  • [33] van der Voort, M.; Baker, E.; Collet, C. Fragmentation from Detonations and Less Violent Munition Responses (MSIAC Report 0-208). IMEMTS, Sevilla, Spain, 2019.
  • [34] Bresciani, L.M.; Manes, A.; Ruggiero, A.; Iannitti, G.; Giglio, M. Experimental Tests and Numerical Modelling of Ballistic Impacts against Kevlar 29 Plain-woven Fabrics with an Epoxy Matrix: Macro-homogeneous and Meso-heterogeneous Approaches. Composites, Part B 2016, 88: 114-130.
  • [35] Soydan, A.M.; Tunaboylu, B.; Elsabagh, A.G.; Sarı, A.K.; Akdeniz, R. Simulation and Experimental Tests of Ballistic Impact on Composite Laminate Armor. Adv. Mater. Sci. Eng. 2018, paper 4696143: 1-12.
  • [36] Ansari, M.M.; Chakrabarti, A.; Iqbal, M.A. Dynamic Response of Laminated GFRP Composite under Low Velocity Impact: Experimental and Numerical Study. Procedia Eng. 2017, 173: 153-160.
  • [37] Wai, B.C. Investigation of Shock Wave Attenuation in Porous Media. Naval Postgraduate College-NPS, 2009.
  • [38] Karagiozova, D.; Nurick, G.; Langdon, G.; Yuen, S.C.K.; Chi, Y.; Bartle, S. Response of Flexible Sandwich-type Panels to Blast Loading. Compos. Sci. Technol. 2009, 69(6): 754-763.
  • [39] Bornstein, H.; Phillips, P.; Anderson, C. Evaluation of the Blast Mitigating Effects of Fluid Containers. Int. J. Impact Eng. 2015, 75: 222-228.
  • [40] Bornstein, H. Physical Mechanisms for Near-field Blast Mitigation with Fluid-filled Containers. RMIT University, Australia, 2018.
  • [41] Becker, M.; Seidl, M.; Mehl, M.; Souli, M.h.; Legendre, J.-F. Numerical and Experimental Investigation of SPH, SPG, and FEM for High-velocity Impact Applications. Proc. 12th European LS-DYNA Conf., 2019.
  • [42] Ahmed, K.; Malik, Q.A.; Hussain, A.; Ahmad, I.R.; Ahmad, I. Blast and Fragmentation Studies of a Scaled Down Artillery Shell-Simulation and Experimental Approaches. Int. J. Multiphys. 2021, 15(1): 49-71.
  • [43] Lebel, L.S.; Brousseau, P.; Erhardt, L.; Andrews, W.S. Thermochemistry of the Combustion of Gas Phase and Condensed Phase Detonation Products in an Explosive Fireball. Combust. Flame 2014, 161(4): 1038-1047.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bee39a87-3b0d-4d05-a6bc-5e6baca7bfc7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.