PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Scrutinizing Barremian coprolite inclusions to record digestive strategies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The exceptional preservation of the Las Hoyas coprolites allows the taphonomic study of inclusions on twelve morphotypes and twenty-three specimens. Non-destructive techniques were applied to study the digestion features (pitting, corrosion lines, shape of the fractures at the ends) and the arrangement, number, and size of inelusions. An analysis based on non-metric, multidimensional scaling ordination identified the similarities among the inclusion features and morphotypes. The morphotypes are clustered on the basis of the way of ingestion and the digestive process. The authors recognize three digestive strategies for the Las Hoyas coprolites: (1) ingestion of prey with limited processing in the mouth, scarce to less effective acid secretions, and/or defecation in a short period of time; (2) ingestion of the prey with mastication prior to deglutition, and defecation over a longer period of time; (3) mastication and long retention time of food in the digestive system with more effective acid secretions. This study is a first step in the understanding of the feeding ecology of the Las Hoyas Barremian lentic ecosystem, based on coprolites.
Rocznik
Strony
203--221
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
  • Departamento de Biologia (Paleontologia) and Centro para la Integración en Paleobiologia (CIPb), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
  • Departamento de Biologia (Paleontologia) and Centro para la Integración en Paleobiologia (CIPb), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
Bibliografia
  • 1. Andrews, P. & Fernandez-Jalvo, Y, 1998. 101 uses for fossilized faeces. News and Views of Nature, 393: 629-630.
  • 2. Bailleul, A., Ségalen, L., Buscalioni, A. D., Cambra-Moo, O. & Cubo, J., 2011. Palaeohistology and preservation of tetrapods from Las Hoyas (Lower Cretaceous, Spain). Comptes Rendus Palevol, 10: 367-380.
  • 3. Barrios-de Pedro, S., Poyato-Ariza, F. J., Moratalla, J. J. & Buscalioni, A. D., 2018a. Exceptional coprolite association from the Early Cretaceous continental Lagerstätte of Las Hoyas, Cuenca, Spain. PLoS ONE 13 (5): e0196982.
  • 4. Barrios-de Pedro, S., Poyato-Ariza, F. J., Moratalla, J. J. & Buscalioni, A. D., 2018b. An exceptional coprolite assemblage from Las Hoyas fossil site (La Huérguina Formation, Cuenca, Spain). In: Bordy, E. M. (ed.), Proceedings of the 2nd International Conference of Continental Ichnology (ICCI2017), Nuy Valley (Western Cape Winelands), 1-8 October 2017. Palaeontologia Africana, 52: 141-142.
  • 5. Bozinovic, F., 1993. Fisiología ecológica de la alimentación y digestión en vertebrados: modelos y teorías. Revista Chilena de Historia Natural, 66: 375-382.
  • 6. Buatois, L. A., Mángano, M. G., Fregenal-Martínez, M. A. & Gibert, J. M., de, 2000. Short-term colonization trace-fossil assemblages in a carbonate lacustrine Konservat-Lagerstätte (Las Hoyas fossil site, Lower Cretaceous, Cuenca, Central Spain). Facies, 43: 145-156.
  • 7. Buscalioni, A. D. & Fregenal-Martínez, M. A., 2010. A holistic approach to the palaeoecology of Las Hoyas Konservat-Lagerstätte. In: Buscalioni, A. D. & Fregenal-Martínez, M. A. (eds), Mesozoic Terrestrial Ecosystems and Biotas. Journal of Iberian Geology, Special Volume, 36: 297-326.
  • 8. Buscalioni, A. D. & Poyato-Ariza, F. J., 2016. Las Hoyas: a unique Cretaceous ecosystem. In: Khosla, A. & Lucas, S. G. (eds), Cretaceous Period: Biotic Diversity and Biogeography. New Mexico Museum of Natural History and Science, Bulletin, 71: 51-63.
  • 9. Butler, V. L & Schroeder, R. A., 1998. Do digestive processes leave diagnostic traces on fish bones? Journal of Archaeological Science, 25: 957-971.
  • 10. Clarke, K. R. & Warwick, R. M., 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2ndEdition. PRIMER-E, Plymouth, 176 pp.
  • 11. Cork, S. J. & Kenagy, G. J., 1989. Nutritional values of hypogeous fungus for a forest-dwelling ground squirrel. Ecology, 70: 577-586.
  • 12. Davenport, J., Grove, D. J., Cannon, J., Ellis, T. R. & Stables, R., 1990. Food capture, appetite, digestion rate and efficiency inhatchling and juvenile Crocodylus porosus. Journal of Zoology, 200: 569-592.
  • 13. Diefenbach, C. O. C., 1975. Gastric function in Caiman Crocodilus (Crocodylia: Reptilia)-I. Rate of gastric digestion and gastric motility as a function of temperature. Comparative Biochemistry and Physiology, 51(A): 259-265.
  • 14. Dentzien-Diaz, P., Carrillo-Briceňo, J. D., Francischini, H. & Sánchez, R., 2018. Paleoecological and taphonomical aspects of the Late Miocene vertebrate coprolites (Urumaco Formation) of Venezuela. Palaeogeography, Palaeoclimatology, Palaeoecology, 490: 590-603.
  • 15. Eriksson, M. E., Lindgren, J., Chin, K. & Mansby, U., 2011. Coprolite morphotypes from the Upper Cretaceous of Sweden: novel views on an ancient ecosystem and implications for coprolite taphonomy. Lethaia, 44: 455-468.
  • 16. Fernández-Jalvo, Y. & Andrews, P., 2016. Atlas of Taphonomic Identifications: 1001+ Images of Fossil and Recent Mammal Bone Modification. Vertebrate Paleobiology and Paleoanthropology. Springer Science+Business Media, Dordrecht, 359 pp.
  • 17. Fregenal-Martínez, M. & Meléndez, N., 2016. Environmental reconstruction: a historical review. In: Poyato-Ariza, F. J. & Buscalioni, A. D. (eds), Las Hoyas: A Cretaceous Wetland. Dr. Friedrich Pfeil Verlag, München, pp. 14-28.
  • 18. Fregenal-Martínez, M. A., Meléndez, N., Muňoz-García, M. B., Elez, J. & Horra, R., de la, 2017. The stratigraphic record of the Late Jurassic-Early Cretaceous rifting in the Alto Ta- jo-Serranía de Cuenca region (Iberian Ranges, Spain): genetic and structural evidences for a revision and a new lithostratigraphic proposal. Revista de la Sociedad Geológica de Espana, 30: 113-142.
  • 19. Furness, J. B., Cottrell, J. J. & Bravo, D. M., 2015. Comparative gut physiology symposium: comparative physiology of digestion. American Society of Animal Science, 93: 485-491.
  • 20. Gibert, J. M., de, Moratalla, J. J., Mángano, M. A. & Buatois, L. A., 2016. Ichnoassemblage (trace fossils). In: Poyato-Ariza, F. J. & Buscalioni, A. D. (eds), Las Hoyas: A Cretaceous Wetland. Dr. Friedrich Pfeil Verlag, München, pp. 195-201.
  • 21. Guerrero, M. C., López-Archilla, A. I. & Iniesto, M., 2016. Microbial mats and preservation. In: Poyato-Ariza, F. J. & Buscalioni, A. D. (eds), Las Hoyas: A Cretaceous Wetland. Dr. Friedrich Pfeil Verlag, München, pp. 220-228.
  • 22. Gutiérrez, G., 1998. Estrategias de forrageo. In: Ardila, R., López, W., Pérez, A. M., Quinones, R. & Reyes, F. (eds), Manual de Análisis experimental del comportamiento. Librería Nueva, Madrid, pp. 359-381.
  • 23. Hammer, O., Harper, D. A. T. & Ryan, P. D., 2001. PAST: Paleontological Statistics software package for education and analysis. Palaeontología Electronica, 4(1): 9 pp.
  • 24. He, H. & Wurtsbaugh, W. A., 1993. An empirical model of gastric evacuation rates of fish and an analysis of digestion in piscivorous brown trout. Transactions of the American Fisheries Society, 122: 717-730.
  • 25. Hunt, A. P. & Lucas, S. G., 2012. Descriptive terminology of coprolites and recent feces. In: Hunt, A. P., Milán, J., Lucas, S. G. & Spielmann, J. A. (eds), Vertebrate Coprolites. New Mexico Museum of Natural History & Science, Bulletin, 57: 153-160.
  • 26. Hunt, A. P., Lucas, S. G., Milán, J. & Spielmann, J. A., 2012. Vertebrate coprolite studies: Status and prospectus. In: Hunt, A. P.,
  • 27. Milán, J., Lucas, S. G. & Spielmann, J. A. (eds), Vertebrate Coprolites. New Mexico Museum of Natural History & Science, Bulletin, 57: 5-24
  • 28. Iniesto, M., López-Archilla, A. I., Fregenal-Martínez, M. A., Buscalioni, Á. D. & Guerrero, M. C., 2013. Involvement of microbial mats in delayed decay: An experimental essay on fish preservation. Palaios, 28: 56-66.
  • 29. Iniesto, M., Buscalioni, Á. D., Guerrero, M. C., Benzerara, K., Moreira, D. & López-Archilla, A. I., 2016. Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates. Scientific Reports, 6: 1-12.
  • 30. Luo, M., Hu, S., Benton, M. J., Shi, G. R., Zhao, L., Huang, J., Song, H., Wen, W., Zhang, Q., Fang, Y, Huang, Y. & Chen, Z. Q., 2017. Taphonomy and palaeobiology of early Middle Triassic coprolites from the Luoping biota, southwest China: Implications for reconstruction of fossil food webs. Palaeogeography, Palaeoclimatology, Palaeoecology, 474: 232-246.
  • 31. Milán, J., 2012. Crocodylian scatology-A look into morphology, internal architecture, inter-and intraspecific variation and prey remains in extant crocodylian feces. In: Hunt, A. P., Milán, J., Lucas, S. G. & Spielmann, J. A. (eds), Vertebrate coprolites. New Mexico Museum of Natural History and Science, Bulletin, 57: 65-72.
  • 32. Niedźwiedzki, G., Bajdek, P, Owocki, K. & Kear, B. P., 2016. An Early Triassic polar predator ecosystem revealed by vertebrate coprolites from the Bulgo Sandstone (Sydney Basin) of southeastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 464: 5-15.
  • 33. Owocki, K., Niedźwiedzki, G., Sennikov, A. G., Golubev, V. K., Janiszewska, K. & Sulej, T., 2012. Upper Permian vertebrate coprolites from the Vyazniki and Gorokhovets, Vyatkianregional stage, Russian Platform. Palaios, 27: 867-877.
  • 34. Penry, D. L. & Jumars, P. A., 1987. Modeling animal guts as chemical reactors. The American Naturalist, 129: 69-96.
  • 35. Pinto-Lona, A. C. & Andrews, P J., 1999. Amphibian taphonomy and its implication to the fossil record of Dolina (middle Pleistocene, Atapuerca, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 149: 411-429.
  • 36. Poyato-Ariza, F. J., Talbot, M. R., Fregenal-Martínez, M. A., Meléndez, N. & Wenz, S., 1998. First isotopic and multidisciplinary evidence for nonmarine coelacanths and pycnodontiform fishes: palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 144: 65-84.
  • 37. Rasband, W. S., 1997-2018. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. https://imagej.nih.gov/ij/ (1997-2018).
  • 38. Rodríguez-de la Rosa, R. A., Cevallos-Ferriz, S. R. S. & Silva-Pineda, A., 1998. Paleobiological implications of Campanian coprolites. Palaeogeography, Palaeoclimatology, Palaeoecology, 142: 231-254.
  • 39. Stevens, C. E. & Hume, I. D., 1995. Comparative Physiology of Vertebrate Digestive System, 2nd Edition. Cambridge University Press, Cambridge, 400 pp.
  • 40. Tappen, M. & Wrangham, R., 2000. Recognizing hominoid-modified bones: the taphonomy of colobus bones partially digested by free-ranging chimpanzees in the Kibale Forest, Uganda. American Journal of Physical Anthropology, 113: 217-234.
  • 41. Zuschin, M., Harzhauser, M. & Sauermoser, K., 2006. Patchiness of local species richness and its implications for large-scale diversity patterns: an example for the middle Miocene of the Paratethys. Lethaia, 39: 65-80.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bee34787-a397-4dc6-8039-cff2e79038f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.