Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper proposes a self-excited induction generator model with saturation effect for power generating mode in a remote site. The model is led through the space vector mathematical formalism and allows one to analyze the steady and dynamic states. It is developed for a squirrel cage induction machine. This model provides magnetizing inductance variation able to influence the build-up and the stabilization of voltage generation when the load changes. The final result is a realistic approach model which takes into consideration the dependency of the magnetizing inductance versus magnetizing current. This novel model is validated through experimental measurements to demonstrate its validity and practicability.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
755--772
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wz.
Twórcy
autor
- College of Engineering, Northern Border University Arar, 1321, Saudi Arabia
- ENSIT, University of Tunis 5-Taha Hussein, Tunis-1008, Tunisia
autor
- College of Engineering, Northern Border University Arar, 1321, Saudi Arabia
autor
- Faculty of Applied Sciences, University of Artois Béthune, France
autor
- Faculty of Applied Sciences, University of Artois Béthune, France
Bibliografia
- [1] Herbert G. M. J., Iniyan S., Sreevalsan E., Rajapandian S., A review of wind energy technologies, Renewable and Sustainable Energy Reviews, vol. 11, no. 6, pp. 1117–1145 (2007).
- [2] Rahim A. H. M. A., Ahsanul Alam M., Kandlawala M. F., Dynamic performance improvement of an isolated wind turbine induction generator, Computers and Electrical Engineering, vol. 35, no. 4, pp. 594–607 (2009).
- [3] Tudorache T., Bostan V., Wind Generators Test Bench. Optimal Design of PI Controller, Advances in Electrical and Computer Engineering, vol. 11, no. 3, pp. 65–70 (2011).
- [4] Mihet-Popa L., Groza V., Modeling and Simulation of a 12 MW Wind Farm, Advances in Electrical and Computer Engineering, vol. 10, no. 2, pp. 141–144 (2010).
- [5] Gaurav K. K., Bhim S., Voltage and frequency controllers for an asynchronous generator-based isolated wind energy conversion system, IEEE Transaction on Energy Conversion, vol. 26, no. 2, pp. 402–416 (2011).
- [6] Deng Y. Y., Kornelis B., van der Leun K., Transition to a fully sustainable global energy system, Energy Strategy Reviews, vol. 1, iss. 2, pp. 109–121 (2012).
- [7] Wang Y., Silva V., Lopez-Botet-Zulueta M., Impact of high penetration of variable renewable generation on frequency dynamics in the continental Europe interconnected system, IET Renewable Power Generation, vol. 10, no. 1, pp. 10–16 (2016).
- [8] Ekanayake, J., Induction generators for small hydro schemes, IET Power Engineering, vol. 16, no. 2, pp. 61–67 (2002).
- [9] Dawit, S., Colin G., Muhammed Fazlur R., The dynamic characteristics of an isolated self-excited induction generator driven by a wind turbine, IEEE Transaction on Industrial Application, vol. 39, no. 4, pp. 936–944 (2003).
- [10] Chtchetinine O., Voltage stabilisation system for induction generator in standalone mode, IEEE Transaction on Energy Conversion, vol. 24, no. 2, pp. 936–944 (2009).
- [11] Haque M. H., A novel method of evaluating performance characteristics of a self-excited induction generator, IEEE Transaction on Energy Conversion, vol. 14, no. 3, pp. 358–365 (1999).
- [12] Bansal R. C., Three-phase self-excited induction generators: An Overview, IEEE Transaction on Energy Conversion, vol. 20, no. 2, pp. 292–299 (2005).
- [13] Seyoum D., Grantham C., Rahaman F., The dynamic characteristics of an isolated self-excited induction generator driven by a wind turbine, IEEE Transaction on Industrial Application, vol. 39, no. 4, pp. 936–944 (2003).
- [14] Lopes L. A. C., Almeida R. G., Wind-driven self-excited induction generator with voltage and frequency regulated by a reduced rating voltage source inverter, IEEE Transaction on Energy Conversion, vol. 21, no. 2, pp. 297–304 (2006).
- [15] Alolah A. L., Alkanthal M. A., Optimization based steady state analysis of three phase SEIG, IEEE Transaction on Energy Conversion, vol. 15, no. 1, pp. 61–65 (2000).
- [16] Ahmed T., Noro Hiraki O., Nakaoka E. M., Terminal voltage regulation characteristics by static var compensator for a three phase self-excited induction generator, IEEE Transaction on Industrial Application, vol. 40, no. 4, pp. 978–988 (2004).
- [17] Subramaniam S. K., Natarajan K., Muthiah S., Mahendhar R., Modelling, analysis and control of stand-alone self-excited induction generator-pulse width modulation rectifier systems feeding constant DC voltage applications, IET Generation Transmission and Distribution., vol. 8, no. 6, pp. 1140–1155 (2014).
- [18] Murthy S. S., Singh B. P., Nagamani C., Satyanarayana K. V. V., Studies on the use of conventional induction motors as self-excited induction generators, IEEE Transaction on Energy Conversion, vol. 3, no. 4, pp. 842–848 (1988).
- [19] Bodson M., Kiselychnyk O., Analysis of Triggered Self-Excitation in Induction Generator and Experimental Validation, IEEE Transaction on Energy Conversion, vol. 27, no. 2, pp. 238–249 (2012).
- [20] Kalamen L., Rafajdus P., Sekerak P., Hrabovcova V., A novel method of magnetizing inductance investigation of self-excited induction generators, IEEE Transactions on Magnetics, vol. 48, no. 4, pp. 1657–1660 (2012).
- [21] Harrington R. J., Bassiouny F. M. M., New approach to determine the critical capacitance for self-excited induction generators, IEEE Transaction on Energy Conversion, vol. 13, no. 3, pp. 244–249 (1998).
- [22] Kheldoun A., Refoufi L., Khodja D. E., Analysis of the self-excited induction generator steady state performance using a new efficient algorithm, Electric Power System Research, 86, pp. 61–67 (2012).
- [23] Brudny J. F., Pusca R., Roisse H.,Wind turbines using self-excited three-phase induction generators: an innovative solution for voltage-frequency control, European Physical Journal Applied Physics, vol. 43, pp. 173–187 (2008).
- [24] Gordon R. S., Modelling of induction machines for electric drives, IEEE Transaction on Industrial Application, vol. 25, no. 6, pp. 1126–1131 (1989).
- [25] Levi E., A unified approach to main flux saturation modelling in D-Q axis models of induction machines, IEEE Transaction on Energy Conversion, vol. 10, no. 3, pp. 455–461 (1995).
- [26] Moulahoum S., Baghli L., Rezzoug A., Touhami O., Sensorless Vector Control of a Saturated Induction Machine accounting for iron loss, European Journal of Electrical Engineering, Lavoisier, Hermès Sciences, vol. 11, no. 4/5, pp. 511–543 (2008).
- [27] Idjdarene K., Rekioua D., Rekioua T., Performance of an isolated induction generator under unbalanced loads, IEEE Transaction on Energy Conversion, vol. 25, no. 2, pp. 303–311 (2010).
- [28] Hallenius K. E., Vas P., Brown J., The analysis of a saturated self-excited asynchronous generator, IEEE Transaction on Energy Conversion, vol. 6, no. 2, pp. 336–345 (1991).
- [29] Touti E., Pusca R., Manata J. P., Brudny J. F., Châari A., On the use of a dimmer for a robust frequency control of a self-excited three-phase induction wind generator, Journal of Power Electronics, vol. 12, no. 4, pp. 1–12 (2014).
- [30] Ababsa M. L., Ninet O., Velu G., Lecointe J. P., High-Temperature Magnetic Characterization Using an Adapted Epstein Frame, IEEE Transactions on Magnetics, vol. 54, iss. 6 (2018).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bedc74f0-2038-496b-a3bc-8de700881e7d