PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The use of moisture-responsive materials in 4D printing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose The objective of this research paper is to compile a list of key moisture-sensitive smart materials used in 4D printing. These materials have applications in various fields, including industrial and medical, and the list can be used as a reference for creating 4D-printed sensors and actuators. Design/methodology/approach The smart materials used in 4D printing are discussed, and a description of each material is given, including its principle, applications and areas of use. Findings We have discovered a large number of different materials that are sensitive to moisture and have identified those that are most essential for use in 4D printing. Research limitations/implications According to the results of this research, the moisture-sensitive materials used in 4D printing have very limited use and application, and the majority of these materials are still in the research and development stage. Originality/value This review article provides researchers interested in using smart materials to exploit 4D printing in the industrial and medical fields, as well as in many other disciplines, with a means to identify the most widely used and prevalent moisture-sensitive materials.
Rocznik
Strony
5--13
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
  • National Higher School of Electricity and Mechanics, Hassan II University of Casablanca, Morocco
autor
  • Laboratory of Advanced Research on Industrial and Logistic Engineering, National Higher School of Electricity and Mechanics, Hassan II University of Casablanca, Casablanca
autor
  • Laboratory of Advanced Research on Industrial and Logistic Engineering, National Higher School of Electricity and Mechanics, Hassan II University of Casablanca, Casablanca
Bibliografia
  • [1] P. Mehta, P. Sahlot, Application of phase change materials in 4D printing: A review, Materials Today: Proceedings 47/14 (2021) 4746-4752. DOI: https://doi.org/10.1016/j.matpr.2021.05.664
  • [2] C. Maraveas, I.S. Bayer, T. Bartzanas, 4D printing: Perspectives for the production of sustainable plastics for agriculture. Biotechnology Advances 54 (2021) 107785. DOI: https://doi.org/10.1016/j.biotechadv.2021.107785
  • [3] I. Antar, M. Othmani, K. Zarbane, M. El Oumami, Z. Beidouri, Topology optimization of a 3D part virtually printed by FDM, Journal of Achievements in Materials and Manufacturing Engineering 112/1 (2022) 25-32. DOI: https://doi.org/10.5604/01.3001.0016.0289
  • [4] P.G. Ikonomov, A. Yahamed, P.D. Fleming, A. Pekarovicova, Design and testing 3D printed structures for bone replacements, Journal of Achievements in Materials and Manufacturing Engineering 101/2 (2020) 76-85. DOI: https://doi.org/10.5604/01.3001.0014.4922
  • [5] M. Aberoumand, K. Soltanmohammadi, D. Rahmatabadi, E. Soleyman, I. Ghasemi, M. Baniassadi, M. Baghani, 4D printing of polyvinyl chloride (PVC): a detailed analysis of microstructure, programming, and shape memory performance. Macromolecular Materials and Engineering 308/7 (2023) 2200677. DOI: https://doi.org/10.1002/mame.202200677
  • [6] A. Fallah, S. Asif, G. Gokcer, B. Koc, 4D Printing of Continuous Fiber-Reinforced Electroactive Smart Composites by Coaxial Additive Manufacturing, Composite Structures 316 (2023) 117034. DOI: https://doi.org/10.1016/j.compstruct.2023.117034
  • [7] C.A. Spiegel, M. Hackner, V.P. Bothe, J.P. Spatz, E. Blasco, 4D printing of shape memory polymers: from macro to micro, Advanced Functional Materials 32/51 (2022) 2110580. DOI: https://doi.org/10.1002/adfm.202110580
  • [8] K. Zhang, A. Geissler, M. Standhardt, S. Mehlhase, M. Gallei, L. Chen, C.M. Thiele, Moisture-responsive films of cellulose stearoyl esters showing reversible shape transitions, Scientific Reports 5/1 (2015) 11011. DOI: https://doi.org/10.1038/srep11011
  • [9] Y. Cui, D. Li, C. Gong, C. Chang, Bioinspired shape memory hydrogel artificial muscles driven by solvents, ACS Nano 15/8 (2021) 13712-13720. DOI: https://doi.org/10.1021/acsnano.1c05019
  • [10] M.C. Mulakkal, R.S. Trask, V.P. Ting, A.M. Seddon, Responsive Cellulose-Hydrogel Composite Ink for 4D Printing. Materials and Design 160 (2018) 108-118. DOI: https://doi.org/10.1016/j.matdes.2018.09.009
  • [11] Z. Li, J. Wanga, Y. Xu, M. Shen, C. Duan, L. Dai, Y. Ni, Green and sustainable cellulose-derived humidity sensors: A review, Carbohydrate Polymers 270 (2021) 118385. DOI: https://doi.org/10.1016/j.carbpol.2021.118385
  • [12] M. Ganesan, R. Kumar, D.K. Satapathy, Bidirectional actuation of silk fibroin films: role of water and alcohol vapors, Langmuir 38/19 (2022) 6066-6075. DOI: https://doi.org/10.1021/acs.langmuir.2c00315
  • [13] S. Grabska-Zielińska, A. Sionkowska, How to Improve Physico-Chemical Properties of Silk Fibroin Materials for Biomedical Applications? —Blending and Cross-Linking of Silk Fibroin—A Review, Materials 14/6 (2021) 1510. DOI: https://doi.org/10.3390/ma14061510
  • [14] W.T. Nugroho, Y. Dong, A. Pramanik, J. Leng, S. Ramakrishna, Smart polyurethane composites for 3D or 4D printing: general-purpose use, sustainability and shape memory effect, Composites Part B: Engineering 223 (2021) 109104. DOI: https://doi.org/10.1016/j.compositesb.2021.109104
  • [15] Z.U. Arif, M.Y. Khalid, A. Zolfagharian, M. Bodaghi, 4D bioprinting of smart polymers for biomedical applications: recent progress, challenges, and future perspectives, Reactive and Functional Polymers 179 (2022) 105374. DOI: https://doi.org/10.1016/j.reactfunctpolym.2022.105374
  • [16] M. Falahati, P. Ahmadvand, S. Safaee, Y.C. Chang, Z. Lyu, R. Chen, L. Li, Y. Lin, Smart polymers and nanocomposites for 3D and 4D printing, Materials Today 40 (2020) 215-245. DOI: https://doi.org/10.1016/j.mattod.2020.06.001
  • [17] A.B. Baker, S.R.G. Bates, T.M. Llewellyn-Jones, L.P.B. Valori, M.P.M. Dicker, R.S. Trask, 4D printing with robust thermoplastic polyurethane hydrogel-elastomer trilayers, Materials and Design 163 (2019) 107544. DOI: https://doi.org/10.1016/j.matdes.2018.107544
  • [18] M.A. Chan, S.K. Obendorf, Surface Modification of Microporous Polypropylene Membrane by UV-initiated Grafting with Poly (Ethylene Glycol) Diacrylate, Fibers and Polymers 15 (2014) 2032-2039. DOI: https://doi.org/10.1007/s12221-014-2032-8
  • [19] Z. Zhang, K.G. Demir, G.X. Gu, Developments in 4D-printing: a review on current smart materials, technologies, and applications, International Journal of Smart and Nano Materials 10/3 (2019) 205-224. DOI: https://doi.org/10.1080/19475411.2019.1591541
  • [20] M.J. Ansari, R.R. Rajendran, S. Mohanto, U. Agarwal, K. Panda, K. Dhotre, R. Manne, A. Deepak, A. Zafar, M. Yasir, S. Pramanik, Poly(N-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art, Gels 8/7 (2022) 454. DOI: https://doi.org/10.3390/gels8070454
  • [21] J.C. Breger, C. Yoon, R. Xiao, H.R. Kwag, M.O. Wang, J.P. Fisher, T.D. Nguyen, D.H. Gracias, Self-folding thermo-magnetically responsive soft microgrippers, ACS Applied Materials and Interfaces 7/5 (2015) 3398-3405. DOI: https://doi.org/10.1021/am508621s
  • [22] Z. Jiang, P. Shen, M.L. Tan, Q. Yan, J. Viktorova, C. Cementon, X. Peng, P. Xiao, L.A. Connal, 3D and 4D printable dual cross-linked polymers with high strength and humidity-triggered reversible actuation, Materials Advances 2/15 (2021) 5124-5134. DOI: https://doi.org/10.1039/D1MA00223F
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bedb24d3-a8de-47a2-a2c2-f34199b5e0ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.