PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Prediction of water quality in Riva River watershed

Identyfikatory
Warianty tytułu
PL
Prognozowanie jakości wody w zlewni rzeki Riva
Języki publikacji
EN
Abstrakty
EN
The Riva River is a water basin located within the borders of Istanbul in the Marmara Region (Turkey) in the south-north direction. Water samples were taken for the 35 km drainage area of the Riva River Basin before the river flows into the Black Sea at 4 stations on the Riva River every month and analyses were carried out. Changes were observed in the quality of water from upstream to downstream. For this purpose, the spatial and temporal variations of water quality were investigated using 13 water quality variables with the ANOVA test. It was observed that COD, DO, S and BOD were important in determining the spatial variation. On the other hand, it was found out that all the variables were effective in determining the temporal variation. Moreover, the correlation analysis which was carried out in order to assess the relations between water quality variables showed that the variables of BOD-COD, BOD-EC, COD-EC, BOD-T and COD-T were correlated and the regression analysis showed that COD, TKN and NH4-N explained BOD and BOD, NH4-N, T and TSS explained COD by approximately 80 %. Consequently, the Artificial Neural Network (ANN), Decision Tree and Logistic Regression models were developed using the data of training set in order to predict the water quality classes of the variables of COD, BOD and NH4-N. Quality classes were predicted for the variables by inputting the data of testing set into the developed models. According to these results, it was seen that the ANN was the best prediction model for COD, the Decision Tree for BOD and the ANN and Decision Tree for NH4-N.
Rocznik
Strony
727--742
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • Environmental Engineering Department, Sakarya University, Esentepe Campus 54187 Sakarya, Turkey, phone +90 264 295 39 13, fax +90 264 295 56 01
autor
  • Business Administration Department, Sakarya University, Esentepe Campus 54187 Sakarya, Turkey
  • Environmental Engineering Department, Yildiz Technical University, Davutpasa Campus, 34220 Istanbul, Turkey
Bibliografia
  • [1] Singh KP Malik A Sinha S. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques - a case study. Analytica Chim Acta. 2015;538(1-2):355-74. DOI: 10.1016/j.aca.2005.02.006.
  • [2] Mishra BK Regmi RK Masago Y Fukushi K Kumar P Saraswat C. Assessment of Bagmati river pollution in Kathmandu valley: Scenario-based modeling and analysis for sustainable urban development. Sustain Water Qual Ecol. 2017;9-10:67-77. DOI: 10.1016/j.swaqe.2017.06.001.
  • [3] El-Tohamy WS Abdel-Baki SN Abdel-Aziz NE Khidr AAA. Evaluation of spatial and temporal variations of surface water quality in the Nile River. Ecol Chem Eng S. 2018;25:569-80. DOI: 10.1515/eces-2018-0038.
  • [4] Taylor SD He Y Hiscock KM. Modelling the impacts of agricultural management practices on river water quality in Eastern England. J Environ Manage. 2016;180:147-63. DOI: 10.1016/j.jenvman.2016.05.002.
  • [5] Pirani M Panton A Purdie DA Sahu SK. Modelling macronutrient dynamics in the Hampshire Avon River: A Bayasian approach to estimate seasonal variability and total flux. Sci Total Environ. 2016;572:1449-60. DOI: 10.1016/j.scitotenv.2016.04.129.
  • [6] Melching CS Liang J Fleere L Wethington D. Modeling the water quality impacts of the separation of the Great Lakes and Mississippi River basins for invasive species control. J Great Lakes Res. 2015;41:87-98. DOI: 10.1016/j.jglr.2014.11.009.
  • [7] Mainali J Chang H. Landscape and anthropogenic factors affecting spatial patterns of water quality trends in a large river basin South Korea. J Hydrol. 2018;564:26-40. DOI: 10.1016/j.jhydrol.2018.06.074.
  • [8] Swain R Sahoo B. Improving river water quality monitoring using satellite data products and a genetic algorithm processing approach. Sustain Water Qual Ecol. 2017;9-10:88-114. DOI: 10.1016/j.swaqe.2017.09.001.
  • [9] Shia Y Xu G Wang Y Engel BA Peng H Zhang W et al. Modelling hydrology and water quality processes in the Pengxi River basin of the Three Gorges Reservoir using the soil and water assessment tool. Agr Water Manage. 2017;82:24-38. DOI: 10.1016/j.agwat.2016.12.007.
  • [10] Decelis LDR Igúzquiza EP Andreo B. Spatial prediction of water quality variables along a main river channel in presence of pollution hotspots. Sci Total Environ. 2017;605-606:276-90. DOI: 10.1016/j.scitotenv.2017.06.145.
  • [11] Vrebos D Beauchard O Meire P. The impact of land use and spatial mediated processes on the water quality in a river system. Sci Total Environ. 2017;601-602:365-73. DOI: 10.1016/j.scitotenv.2017.05.217.
  • [12] Jannin LB Brito D Sun X Jauch E Neves R Sauvage S et al. Spatially distributed modelling of surface water - groundwater exchanges during overbank flood events - a case study at the Garonne River. Adv Water Resour. 2016;94:146-59. DOI: 10.1016/j.advwatres.2016.05.008.
  • [13] Gorzel M Kornijow R Buczynska E. Quality of rivers: Comparison of hydro-morphological physical-chemical and biological methods. Ecol Chem Eng S. 2018;25:101-22. DOI: 10.1515/eces-2018-0007.
  • [14] Wang Y Zhang W Zhao Y Peng H Shi Y. Modelling water quality and quantity with the influence of inter-basin water diversion projects and cascade reservoirs in the Middle-lower Hanjiang River. J Hydrol. 2016;541:1348-62. DOI:10.1016/j.jhydrol.2016.08.039.
  • [15] Whitehead PG Bussi G Bowes MJ Read DS Hutchins MG Elliott JA et al. Dynamic modelling of multiple phytoplankton groups in river with an application to the Thames river system in the UK. Environ Model Softw. 2015;74: 75-91. DOI: 10.1016/j.envsoft.2015.09.010.
  • [16] Ogleni N Topal B. Water quality assessment of the Mudurnu River Turkey using biotic indices. Water Resour Manage. 2011;25:2487-508. DOI: 10.1007/s11269-011-9822-1.
  • [17] Ustaoğlu F Tepe Y. Water quality and sediment contamination assessment of Pazarsuyu Stream Turkey using multivariate statistical methods and pollution indicators. J Soil Water Conserv. 2019;7:47-56. DOI: 10.1016/j.iswcr.2018.09.001.
  • [18] Papazova P Simeonova P. Long-term statistical assessment of the river quality of Tundja River. Ecol Chem Eng S. 2012;19:213-26. DOI: 10.2478/v10216-011-0016-9.
  • [19] Avila R Horn B Moriarty E Hodson R Moltchanova E. Evaluating statistical model performance in water quality prediction. J Environ Manage. 2018;206:910-9. DOI: 10.1016/j.jenvman.2017.11.049.
  • [20] Libera DA Sankarasubramanian A. Multivariate bias corrections of mechanistic water quality model predictions. J Hydrol. 2018;564:529-41. DOI: 10.1016/j.jhydrol.2018.07.043.
  • [21] Tomas D Čurlin M Marić AS. Assessing the surface water status in Pannonian ecoregion by the water quality index model. Ecol Indic. 2017;79:182-90. DOI: 10.1016/j.ecolind.2017.04.033.
  • [22] Mahmoodabadi M Arshad RR. Long-term evaluation of water quality parameters of the Karoun River using a regression approach and the adaptive neuro-fuzzy inference system. Mar Pollut Bull. 2018;126:372-80. DOI: 10.1016/j.marpolbul.2017.11.051.
  • [23] Kim SE Seo IW. Artificial Neural Network ensemble modeling with conjunctive data clustering for water quality prediction in rivers. J Hydro-Environ Res. 2015;9:3325-39. DOI: 10.1016/j.jher.2014.09.006.
  • [24] Turkish Standards Institution (TSE) (1989). Water Quality - Total Solids Determination. TS 7093 4. Ankara. https://en.tse.org.tr.
  • [25] APWA AWWA WEF Standard Methods for the Examination of Water and Wastewater. 21th Ed. Washington DC: American Public Health Association; 2005. ISBN: 0875530478.
  • [26] Arora S Keshari AK. Estimation of re-aeration coefficient using MLR for modelling water quality of rivers in urban environment. Groundwater Sustainable Dev. 2018;7:430-5. DOI: 10.1016/j.gsd.2017.11.006.
  • [27] Wu Z Wang X Chen Y Cai Y Deng J. Assessing river water quality using water quality index in Lake Taihu Basin China. Sci Total Environ. 2018;612:914-22. DOI: 10.1016/j.scitotenv.2017.08.293.
  • [28] Ewaid SH Abed SA Kadhum SA. Predicting the Tigris River water quality within Baghdad Iraq by using water quality index and regression analysis. Environ Technol Innov. 2018;11:390-8. DOI: 10.1016/j.eti.2018.06.013.
  • [29] Cui F Park C Kim M. Application of curve-fitting techniques to develop numerical calibration procedures for a river water quality model. J Environ Manage. 2019;1:109375. DOI:10.1016/j.jenvman.2019.109375.
  • [30] Kim HG Hong S Jeong KS Kim DK Joo GJ. Determination of sensitive variable regardless of hydrological alteration in artificial neural network model of chlorophyll a: Case study of Nakdong River. Ecol Modell. 2019;398:67-76. DOI: 10.1016/j.ecolmodel.2019.02.003.
  • [31] Singh KP Basant A Malik A Jain G. Artificial neural network modeling of the river water quality - A case study. Ecol Modell. 2009;6:888-95. DOI:10.1016/j.ecolmodel.2009.01.004.
  • [32] Rokach L Maimon O. Data Mining With Decision Trees Theory and Applications. Danvers USA: World Scientific Publishing Co. Pte. Ltd; 2008. ISBN: 9789812771711.
  • [33] Everaert G Bennetsen E Goethals PLM. An applicability index for reliable and applicable decision trees in water quality modelling. Ecol Inf. 2016;32:1-6. DOI: 10.1016/j.ecoinf.2015.12.004.
  • [34] Bostanmaneshrad F Partani S Noori R Nachtnebel HP Berndtsson R Adamowski JF. Relationship between water quality and macro-scale parameters (landuse erosion geology and population density) in the Siminehrood River Basin. Sci Total Environ. 2018;639:1588-600. DOI: 10.1016/j.scitotenv.2018.05.244.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bed74f47-d291-4ab6-90ea-7d3595b91265
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.