PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of geotextile reinforcement on shear strength of sandy soil: laboratory study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents results of a series of undrained monotonic compression tests on loose sand reinforced with geotextile mainly to study the effect of confining stress on the mechanical behaviour of geotextile reinforced sand. The triaxial tests were performed on reconstituted specimens of dry natural sand prepared at loose relative density (Dr = 30%) with and without geotextile layers and consolidated to three levels of confining pressures 50, 100 and 200 kPa, where different numbers and different arrangements of reinforcement layers were placed at different heights of the specimens (0, 1 and 2 layers). The behaviour of test specimens was presented and discussed. Test results showed that geotextile inclusion improves the mechanical behaviour of sand, a significant increase in the shear strength and cohesion value is obtained by adding up layers of reinforcement. Also, the results indicate that the strength ratio is more pronounced for samples which were subjected to low value of confining pressure. The obtained results reveal that high value of confining pressure can restrict the sand shear dilatancy and the more effect of reinforcement efficiently.
Wydawca
Rocznik
Strony
3--13
Opis fizyczny
Bibliogr. 37 poz., rys. tab.
Twórcy
autor
  • Laboratory of Material Science and Environment (LMSE), Hassiba Benbouali University of Chlef – Algeria
autor
  • Laboratory of Material Science and Environment (LMSE), Hassiba Benbouali University of Chlef – Algeria
  • Laboratory Navier-Géotechnique, Ecole des ponts Paris Tech, France
  • Departement of Geotechnical Engineering, Koya University, Danielle Mitterrand Boulevard, Koya KOY45 AB64, Kurdistan Region, F.R. Iraq
autor
  • Laboratory Navier-Géotechnique, Ecole des ponts Paris Tech, France
autor
  • Laboratory Navier-Géotechnique, Ecole des ponts Paris Tech, France
autor
  • Laboratory Navier-Géotechnique, Ecole des ponts Paris Tech, France
Bibliografia
  • [1] AHMED F., BATENI F., MASTURA A., Performance evaluation of silty sand reinforced with fibers, Geotextiles and Geomembranes, 2009, 28(1), 93–99, DOI: 10.1016/j.geotexmem.2009.09.017.
  • [2] AL REFEAI T.O., Behavior of granular soils reinforced with discrete randomly oriented inclusions, Geotextiles and Geomembranes, 1991, 10(4), 319–333, DOI: 10.1016/0266-1144(91)90009-L.
  • [3] ARAB A., SADEK M., BELKHATIR M., SHAHROUR I., Monotonic Preloading Effect on the liquefaction resistance of Chlef silty sand: A Laboratory Study, Arabian Journal For Science and Engineering, 2013, 39(2), 1–10, DOI: 10.1007/s13369-013-0700-4.
  • [4] ASTM D2487, Standard practice for classification of soil for engineering purposes. (Unified Soil Classification System), Annual Book of ASTM Standards, 2000, Vol. 04.08, ASTM, Philadelphia, www.astm.org
  • [5] ASTM D4253-00, Standard test method for maximum index density and unit weight of soils using a vibratory table, Annual Book of ASTM Standards. American Society for Testing and Materials, West Conshohocken, PA, 2002, 1–14, www.astm.org
  • [6] ASTM D422-63, Standard method for particle-size analysis of soils, Annual Book of ASTM Standards, 1989, Vol. 04.08, 86–92. West Conshohoken, www.astm.org
  • [7] ASTM D4767, Standard test method for consolidated undrained triaxial compression test for cohesive soils, ASTM International, West Conshohocken, PA, 2011, www.astm.org
  • [8] BELKHATIR M., DELLA N., ARAB A., SCHANZ T., Laboratory Study on the Hydraulic Conductivity and Pore Pressure of Sand-Silt Mixtures, Marine Georesources and Geotechnology, 2014, 32(2), 106–122, DOI: 10.1080/1064119X.2012.710712.
  • [9] BENGHALIA Y., BOUAFIA A., CANOU J., DUPLA J.C., Liquefaction susceptibility study of sandy soils: effect of low plastic fines, Arab. Journal of Geosciences, 2014, 8(2), 605–618, DOI: 10.1007/s12517-013-1255-0.
  • [10] CHEN C.W., Drained and undrained behavior of fiberreinforced sand, Midwest Transportation Consortium of Student Papers, Transportation Scholars Conference, Iowa State University, Ames, Iowa, 2006.
  • [11] CHEN C.W., LOEHR J.E., Undrained and drained triaxial tests of fiber-reinforced sand, Proceedings of the 4th Asian Regional Conference on Geosynthetics Shanghai, China, 2008.
  • [12] CHEN X., ZHANG J., LI Z., Shear behaviour of a geogridreinforced coarse-grained soil based on large-scale triaxial tests, Geotextiles and Geomembranes, 2014, 42(4), 312–328, DOI: 10.1016/j.geotexmem.2014.05.004.
  • [13] CONSOLI N.C., VENDRUSCOLO M.A., FONINI A., DALLA ROSA F., Fiber reinforcement effects on sand considering a wide cementation range, Geotextextiles and Geomembranes, 2009, 27 (3), 196–203, DOI: 10.1016/j.geotexmem.2008.11.005.
  • [14] DELLA N., BELKHATIR M., ARAB A., CANOU J., DUPLA J.C., Effect of fabric method on instability behavior of granular material, Acta Mechanica, 2014, 225(7), 1–15, DOI: 10.1007/s00707-013-1083-z.
  • [15] DURVILLE J.L., MENEROUD J.P., Phenomenes geomorphologiques induits par le seisme d’El-Asnam, Algerie.−Bull. Liaison Labo. P. et Ch., 120, juillet-aout, 1982, 13–23.
  • [16] ERDOGAN D., ALTUN S., Undrained response of loose fiber reinforced sand, C.B.Ü. Journal of Science and Technology, 2015, 11(1), 7–16, DOI: 10.18466/cbufbe.82988.
  • [17] FEIA S., SULEM J., CANOU J., GHABEZLOO S., CLAIN X., Changes in permeability of sand during triaxial loading: effect of fine particles production, Acta Geotechnica, 2014, 11(1), 1–19, DOI: 10.1007/s11440-014-0351-y.
  • [18] GRAY D.H., OHASHI H., Mechanics of fiber reinforcement in sand, Journal of Geotech. Eng., 1983, 109(3), 335–353, DOI: 10.1061/(ASCE)0733-9410(1983)109:3(335).
  • [19] HAERI S.M., NOORZAD R., OSKOOROUCHI A.M., Effect of geotextile reinforcement on the mechanical behavior of sand, Geotextiles and Geomembranes, 2000, 18(6), 385–402, DOI: 10.1016/S0266-1144(00)00005-4.
  • [20] HAMIDI A., HOORESFAND M., Effect of fiber reinforcement on triaxial shear behavior of cement treated sand, Geotextiles and Geomembranes, 2013, 36, 1–9, DOI: 10.1016/j.geotexmem.2012.10.005.
  • [21] HOSSEINPOUR I., MIRMORADI S.H., BARARI A., OMIDVAR M., Numerical evaluation of sample size effect on the stress-strain behavior of geotextile-reinforced sand, Journal of Zhejiang, 2010, 11(8), 555–562, DOI: 10.1631/jzus.A0900535.
  • [22] IBRAIM E., DIAMBRA A., MUIR WOOD D., RUSSELL AR., Static liquefaction of fibre reinforced sand under monotonic Loading, Geotextiles and Geomembranes, 2010, 28(4), 374–385, DOI: 10.1016/j.geotexmem.2009.12.001.
  • [23] KIM Y.S., OH S.W., CHO D.S., Effect of non-woven geotextile reinforcement on mechanical behavior of sand, J. Korean Geosynthetics Society, 2010, 9, 39–45.
  • [24] KRISHNASWAMY N.R., ISAAC N.T., Liquefaction potential of reinforced sand, Geotextiles and Geomembranes, 1994, 13(1), 23–41, DOI:10.1016/0266-1144(94)90055-8.
  • [25] LATHA M.G., MURTHY V.S., Effects of reinforcement form on the behavior of geosynthetic reinforced sand, Geotextiles and Geomembranes, 2007, 25(1), 23–32, DOI: 10.1016/j.geotexmem.2006.09.002.
  • [26] LATHA M.G., MURTHY S.V., Investigation on sand reinforced with different geosynthetics, Geotechnical Testing Journal, 2006, 29(6), DOI: 10.1520/GTJ100439.
  • [27] LIU J., WANG G., KAMAI T., ZHANG F., YANG J., SHI B., Static liquefaction behavior of saturated fiber-reinforced sand in undrained ring-shear tests, Geotextiles and Geomembranes, 2011, 29(5), 462–471, DOI: 10.1016/j.geotexmem.2011.03.002.
  • [28] NAEINI S.A., KHALAJ M., IZADI E., Interfacial shear strength of silty sand–geogrid composite, Geot. Eng., 2013, 166(1), 67–75, DOI: 10.1680/geng.10.00118.
  • [29] NAEINI S.A., GHOLAMPOOR N., Cyclic behavior of dry silty sand reinforced with a geotextile, Geotextiles and Geomembranes, 2014, 42(6), 611–619, DOI: 10.1016/j.geotexmem.2014.10.003.
  • [30] NOORZAD R., FARDAD AMINI P., Liquefaction resistance of Babolsar sand reinforced with randomly distributed fibers under cyclic loading, Geotextiles and Geomembranes, Soil Dynamics and Earthquake Engineering, 2014, 66, 281–292, DOI: 10.1016/j.soildyn.2014.07.011.
  • [31] NOURI S., NECHNECH A., LAMRI B., LURDES LOPES M., Triaxial test of drained test reinforced with plastic layers, Arab. J. Geosci., 2015, 9(1), 1–9, DOI 10.1007/s12517-015-2017-y.
  • [32] RAJAGOPAL K., KRISHNASWAMY N.R., LATHA M.G., Behaviour of sand confined with single and multiple geocells. Geotextiles and Geomembranes, 1999, 17(3), 171–184, DOI: 10.1016/S0266-1144(98)00034-X.
  • [33] RANJAN G., VASAN R.M., CHARAN H.D., Behavior of plastic fiber-reinforced sand, Geotextiles and Geomembranes, 1994, 13(8), 555–565, DOI:10.1016/0266-1144(94)90019-1.
  • [34] TUNA S.C., KARAKAN E., ALTUN S., Mechanical behaviour of geotextile reinforced sand, Imo Teknik Journal, 2015, 26, 7015–7022.
  • [35] VENKATAPPA RAO G., DUTTA R.K., UJWALA D., Strength Characteristics of Sand Reinforced with Coir Fibres and Coir Geotextiles, Electronic Journal of Geotechnical Engineering, USA, 2005, 10/G, http://www.ejge.com
  • [36] YETIMOGLU T., SALBAS O., A study on shear strength of sands reinforced with randomly distributed discrete fibers, Geotextiles and Geomembranes, 2003, 21(2), 103–110, DOI: 10.1016/S0266-1144(03)00003-7.
  • [37] ZHANG M.X., JAVADI A.A., MIN X., Triaxial tests of sand reinforced with 3D inclusions, Geotextiles and Geomembranes, 2006, 24(4), 201–209, DOI: 10.1016/j.geotexmem.2006.03.004.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bed3798f-1005-4825-9d37-e7ec127bbeaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.