PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the elongation forces of oesophageal tissue in uniaxial tensile test

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to determine the range of optimal tensile forces for the oesophageal tissue and to characterise the biomechanics of the oesophageal tissue. Methods: The subjects of the study were oesophageal fragments of white Pekin ducks with a length of approximately 50 mm. Mechanical uniaxial tensile tests were carried out on fragments of the oesophagus and the effect of long-term tissue loading on the ability to permanently elongate was investigated. All measurements carried out were performed under laboratory conditions imitating the tissue environment. Results: Force-elongation characteristics and stress–strain characteristics were determined from the experimental tests. The mean value of the ultimate tensile force in uniaxial tensile test was 45.32 ± 6.67 N. Mean ultimate tensile strain of 0.41 ± 0.02 and mean ultimate tensile stress of 2.04 ± 0.83 MPa were also determined. Tests carried out on the effect of a constant tensile force showed that the average value of permanent strain observed was 32.17 ± 2.26 %. Conclusions: The conducted research allowed to characterise the biomechanics of white Pekin duck oesophageal tissue. The analyzed range of the elongation force provides satisfactory permanent tissue strain. Within the force range studied, no effect of the loading force value on the strain capacity of the oesophageal tissue was demonstrated.
Rocznik
Strony
137--143
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
  • Wrocław University of Science and Technology, Faculty of Mechanical Engineering, Department of Mechanics, Materials and Biomedical Engineering, Wrocław, Poland.
Bibliografia
  • [1] BIRO E., SOMMER G., LEITINGER G., ABRAHAM H., KARDOS D.J., OBERRITTER Z., SAXENA A.K., Ultrastructural changes in esophageal tissue undergoingstretch tests with possible impact on tissue engineering and long gap esophageal repairs performer under tension, Sci Rep, 13, 2023, 1750, DOI: 10.1038/s41598-023-28894-5.
  • [2] BOGUSZ B., PATKOWSKI D., GERUS S., RASIEWICZ M., GÓRECKI W., Staged Thoracoscopic Repair of Long-Gap Esophageal Atresia Without Temporary Gastrostomy, J. Laparoendosc. Adv. Surg. Tech., 2018, DOI: 10.1089/lap.2018.0188.
  • [3] DEUNWALD S.E., VANDERBY R., LAKES R.S., Viscoelastic Relaxation and Recovery of Tendon, Annals of Biomedical Engineering, 2009, Vol. 37, No. 6, 1131–1140, DOI: 10.1007/s10439-009-9687-0.
  • [4] DURCAN C., HOSSAIN M., CHAGNON G., PERIC D., KARAM G., BSIESY L., GIRARD E., Experimental investigations of the human oesophagus: anisotropic properties of the embalmed mucosa–submucosa layer under large deformation, Biomechanics and Modeling in Mechanobiology, 2022, 21, 1685–1702, DOI: 10.1007/s10237-022-01613-1.
  • [5] IZADI S., SMITHERS J., SHIEH H.F., DEMEHRI F.R., MOHAMMED S., HAMILTON T.E., ZENDEJAS B., The History and Legacy of the Foker Process for the Treatment of Long Gap Esophageal Atresia, J. Pediatr. Surg., 2024, 59 (6), 1222–1227, DOI: 10.1016/j.jpedsurg.2023.12.020.
  • [6] KOBIELARZ M., Effect of collagen fibres and elastic lamellae content on the mechanical behaviour of abdominal aortic aneurysms, Acta Bioeng. Biomech., 2020, Vol. 22, No. 3, DOI: 10.37190/ABB-01580-2020-02.
  • [7] KOZERA K., KOŁODZIEJCZYK E., KIERKUŚ J., ORACZ G., Esophageal atresia, Post. N. Med., 2017, XXX (11), 625–628, DOI: 10.25121/PNM.2017.30.11.625.
  • [8] NASR A., LANGER J.C., Mechanical Traction Techniques for Long-Gap Esophageal Atresia: A Critical Appraisal, Eur. J. Pediatr.Surg., 2013, 23, 191–197, DOI: 10.1055/s-0033-1347916.
  • [9] NGWANGWA H., PANDELANI T., MSIBI M., MABUDA I., SEMAKANE L., NEMAVHOLA F., Biomechanical analysis of sheep oesophagus subjected to biaxial testing including hyperelastic constitutive model fitting, Heliyon, 2022, 8, e09312, DOI: 10.1016/j.heliyon.2022.e09312.
  • [10] OETZMANN VON SOCHACZEWSKI C., TAGKALOS E., LINDNER A., LANG H., HEIMANN A., MUENSTERER O.J., Technical Aspects in Esophageal Lengthening: An Investigation of Traction Procedures and Suturing Techniques in Swine, Eur. J. Pediatr. Surg., 2019, 29 (5), 481–484, DOI: 10.1055/s-0038-1676506.
  • [11] SAXENA A.K., BIRO E., SOMMER G., HOLZAPFEL G.A., Esophagus stretch tests: Biomechanics for tissue engineering and possible implications on the outcome of esophageal atresia repairs performed under excessive tension, Esophagus, 2021, 18 (2), 346–352, DOI: 10.1007/s10388-020-00769-y.
  • [12] SHAW-SMITH C., Oesophageal atresia, tracheooesophageal fistula, and the VACTERL association: review of genetics and epidemiology, J. Med. Genet., 2006, 43, 545–554, DOI: 10.1136/jmg.2005.038158.
  • [13] SHIEH H.F., JENNINGS R.W., Long-gap esophageal atresia, Seminars in Pediatric Surgery, 2017, 26, 72–77, DOI: 10.1053/j.sempedsurg.2017.02.009.
  • [14] SZOTEK S., DAWIDOWICZ J., GENIUSZ M., KOZAK M., ŁUKOMSKI R., CZOGALLA A., The biomechanical characteristics of spinal dura mater in the context of its basic morphology, Acta Bioeng. Biomech, 2021, Vol. 23, No. 4, DOI: 10.37190/ABB-01972-2021-02.
  • [15] TOCZEWSKI K., GERUS S., KACZOROWSKI M., KOZUŃ M., WOLICKA J., BOBREK K., FILIPIAK J., PATKOWSKI D., Biomechanics of esophageal elongation with traction sutures on experimental animal model, Sci. Rep., 2022, 12, 3420, DOI: 10.1038/s41598-022-07348-4.
  • [16] YANG J., HU M., HA Z., ZHAO D., QIN T., A novel elimination method of preloading force on the unconfined compression tests of soft tissue, Advances in Mechanical Engineering, 2021, Vol. 13 (4), 1–11, DOI: 10.1177/16878140211010645.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bed25825-395e-43ee-a8b4-867d484df604
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.