Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Identyfikatory
Warianty tytułu
Elektrochemiczna redukcja CO2 we współczesnej energetyce jako metoda produkcji propanolu i innych paliw alternatywnych
Języki publikacji
Abstrakty
The article describes the basic aspects of the electrochemical carbon dioxide reduction process and the catalysts and electrolytes used in it. It is followed by a discussion of the application of this technology, discussing possible conversion products. The process of electrochemical reduction of carbon dioxide, given the current progress in its development, appears to be a promising way to manage this gas, especially given current trends related to the decarbonization of many industries and the search for new methods of disposing of CO2. Since the invention of the technology, advances in reactor design and the discovery of new catalysts have made the process - given the right parameters - economically viable for simple products such as carbon monoxide and formic acid. However, further research work is needed before the process can find industrial application in the production of particularly desirable hydrocarbons such as propanol and ethylene.
Artykuł opisuje podstawowe aspekty procesu elektrochemicznej redukcji dwutlenku Węgla oraz wykorzystywane W nim katalizatory i elektrolity. W dalszej części pracy poruszono zagadnienie zastosowania tej technologii, omawiając możliwe produkty konwersji. Proces elektrochemicznej redukcji dwutlenku węgla, z uwagi na obecny postęp W jej rozwoju, wydaje się być obiecującym sposobem zagospodarowania tego gazu, szczególnie biorąc pod uwagę obecne trendy związane z dekarbonizacją wielu sektorów przemysłu oraz poszukiwaniem nowych metod utylizacji C02. Od momentu wynalezienia tej technologii, postęp W budowie reaktorów i odkrycie nowych katalizatorów sprawiły, że proces — przy odpowiednich parametrach - może być uzasadniony ekonomicznie dla prostych produktów, takich jak tlenek Węgla oraz kwas mrówkowy. Jednakże, zanim proces ten znajdzie zastosowanie przemysłowe W produkcji szczególnie pożądanych węglowodorów, takich jak propanol czy etylen,konieczne są dalsze prace badawcze.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
71--77
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
- Politechnika Śląska
autor
- Politechnika Śląska
- Politechnika Śląska
autor
- Politechnika Śląska
autor
- Politechnika Śląska
Bibliografia
- [1] IEA (2024), Breakthrough Agenda Report 2024, IEA, Paris https://www.iea.org/reports/breakthrough- agenda-report-2024
- [2] Rainer Kungas 2020 J. Electrochem. Soc. 167 044508
- [3] Jose Osorio-Tejada, Marc Escriba-Gelonch, Rani Vertongen Annemie Bogaerts, Volker Hessel, C02 conversion to CO via plasma and electrolysis: a techno-economic and energy cost analysis; Energy & Environmental Science; https://doi.org/10.1039/D4EE00164H Accounts of Chemical Research 2022 55 (14), 1900-1911; DOI: 10.102l/acs.accounts.2c00080
- [4] Park S., Wijaya D.T., Na J., Lee C.. Towards the Large-Scale Electrochemical Reduction of CarbonDioxide. Catalysts 2021 ;1 1:253. https://doi.org/10.3390/catall1020253.
- [5] Hori Y., Wakebe H., Tsukamoto T., Koga O.. Electrocatalytic process of CO selectivity in electrochemical reduction of CO; at metal electrodes in aqueous media. Electrochimica Acta 1994;39:1833—9. https://doi.org/10.1016/0013-4686(94)85172-7.
- [6] Hori Y., Murata A., Takahashi R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J Chem Soc, Faraday Trans 1 1989;85:2309—26. https://doi.org/10. lO39/Fl9898502309.
- [7] Hashiba H., Yotsuhashi S., Deguchi M., Yamada Y.. Systematic Analysis of Electrochemical CO2. Reduction with Various Reaction Parameters using Combinatorial Reactors. ACS Comb Sci 2016;18:203—8. https://doi.org/10.1021/acscombsci.6b00021.
- [8] Alkayyali T., Zargartalebi M., Ozden A., Arabyarmohammadi F., Dorakhan R., Edwards J.P., et al. Path-ways to reduce the energy cost of carbon monoxide electroreduction to ethylene. Joule 2024;8zl478—500. https://doi.org/10.1016/j.joule.2024.02.014.
- [9] Weekes DM, Salvatore DA, Reyes A, Huang A, Berlinguette CP. Electrolytic C02 Reduction in a Flow Cell. Acc Chem Res 2018;51:910—8. https://doi.org/10.102l/acsaccounts8b00010.
- [10] Wakerley D., Lamaison S., Wicks J., Clemens A., Feaster J ., Corral D., et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature C02 electrolysers. Nat Energy 2022;72130—43. https://doi.org/10.1038/541560-021-00973-9.
- [11] Endrodi B., Kecsenovity E., Samu A., Halmagyi T., Roj as—Carbonell S., Wang L., et al. High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell- Energy Environ Sci _ 2020; 13:4098—105. https ://doi.org/l 0.1039/DOEE02589E.
- [12] Chen Z., Concepcion J.J., Brennaman MK Kang P., Norris MR., Hoertz PG., et al. Splitting C02 into CO and Oz by a single catalyst. Proceedings of the National Academy of Sciences 2012;109:15606—11. https://doi.org/10.lO73/pnas.1203122109.
- [13] Creissen C.E., F ontecave M. Solar—Driven Electrochemical C02 Reduction with Heterogeneous Catalysts. Advanced Energy Materials 202l;11:2002652. https://doi.org/10.1002/aenm.202002652.
- [14] Lu H., Wang L. Unbiased photoelectrochemical carbon dioxide reduction shaping the future of solar fuels. Applied Catalysis B: Environmental 2024,345: 123707. https://doi.org/10.1016/j.apcatb.2024. 123707.
- [15] ] Lu W., Zhang Y., Zhang J., Xu P. Reduction of Gas C02 to CO with High Selectivityby Ag Nanocube Based Membrane Cathodes in a Photoelectrochemical System. Ind Eng Chem Res 2020;59:5536—45. https://doi.org/10.1021/acs.iecr.9b06052.
- [16] Romero Cuellar N.S., Wiesner-Fleischer K., Fleischer M., Rucki A., Hinrichsen O. Advantages of C0 over C02 as reactant for electrochemical reduction to ethylene, ethanol and n-propanol on gas diffusion electrodes at high current densities. Electrochimica Acta 2019;307: 164—75. https://doi.org/10.1016/j.electacta.2019.03. 142.
- [17] Phong Duong H., Rivera de la Cruz J.G., Tran N-H., Louis J., Zanna S., Portehault D., et al. Silver and Copper Nitride Cooperate for CO Electroreduction to Propanol. Angewandte Chemie International Edition 2023;62:e202310788. https://doi.org/10.lOO2/anie.202310788.
- [18] Bertheussen E., Verdaguer—Casadevall A., Ravasio D., Montoya J.H., Trimarco D.B.,Roy C., et al. Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide—Derived Copper. Angewandte Chemie International Edition 2016,55: 1450—4. https://doi.org/10.1002/anie.201508851.
- [19] Wu G.,Song Y.,Zheng Q.,Long C.,Fan T., Yang Z., et al. Selective Electroreduction of C02 to n-Propanol in Two-Step Tandem Catalytic System. Advanced Energy Materials 2022;12:2202054. https://doi.org/10.1002/aenm.202202054.
- [20] Jouny M., Luc W., Jiao F. High—rate electroreduction of carbon monoxide to multi-carbon products. Nat Catal 2018;1:748—55. https://doi.org/10.1038/341929-018—0133-2
- [21] Electrolyte Effects on C 02 Electrochemical Reduction to CO Giulia Marcandalli, Mariana C. O. Monteiro, Akansha Goyal, and Marc T. M. Koper Accounts of Chemical Research 2022 55 (14), 1900-1911 DOI: 10.1021/acs.accounts.2c00080
- [22] S. Liang, L. Huang, Y. Gao, Q. Wang, B. Liu, Electrochemical Reduction of C02 to CO over Transition ‘Metal/N—Doped Carbon Catalysts: The Active Sites and Reaction Mechanism. Adv. Sci. 2021, 8, 2102886. https://doi.org/10.1002/advs.202102886
- [23] Yang H., Kaczur J.J., Sajjad S.D., Masel R.l. Performance and long—term stability of C02 conversion to formic acid using a three-compartment electrolyzer design. Journal of C02 Utilization 2020;42:101349. https://doi.org/10.1016/j.jcou.2020.101349.
- [24] Liu L-X., Zhou Y., Chang Y-C., Zhang J-R., Jiang L-P., Zhu W, et al. Tuning Sn304 for C02 reduction to formate with ultra—high current density. Nano Energy 2020,77: 105296. https://doi.org/10.1016/j.nanoen.2020. 105296
- [25] Nam D-H., Shekhah O., Ozden A., McCallum C., Li F., Wang X., et al. High-Rate and Selective C02 Electrolysis to Ethylene via Metal—Organic-Framework-Augmented C02 Availability. Advanced Materials 2022;34:2207088. https://doi.org/10.1002/adma.202207088.
- [26] Duarah P., Haldar D., Yadav V., Purkait M.K. Progress in the electrochemical reduction of C02 to formic acid: A review on current trends and future prospects. Journal of Environmental Chemical Engineering 2021;9: 106394. https://doi.org/10.1016/j.jece.2021. 106394.
- [27] Kuhl KP, Cave ER, Abram D.N., et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 2012;5(5):7050—7059; doi: 10. 103 9/C2EE21234J.
- [28] Fan L., Xia C., Zhu P., Lu Y., Wang H. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat Commun 2020;11:3633. https://doi.org/10.1038/s41467-020—17403-1.
- [29] Wu Y., Du H., Li P., Zhang X., Yin Y., Zhu W. Heterogeneous Electrocatalysis of Carbon Dioxide to Methane. Methane 2023;22148—75. https://doi.org/10.3390/methane2020012.
- [30] Obasanjo CA., Gao G., Crane J., Golovanova V., Garcia de Arquer F.P., Dinh C—T. High-rate and selective conversion of C02 from aqueous solutions to hydrocarbons. Nat Commun 2023;14:3176. https://doi.org/10. 1038/s41467-023-38963-y.
- [31] Zhang L., Li X-X., Lang Z-L., Liu Y., Liu J., Yuan L., et al. Enhanced Cuprophilic Interactions in Crystaline Catalysts F acilitate the Highly Selective Electroreduction of C02 to CH4. J Am Chem Soc 2021;143:3808—16.https://doi.org/10.1021/jacs.0c11450.
- [32] Wiranarongkorn K., Eamsiri K., Chen Y-S., Arpornwichanop A. A comprehensive review of electrochemical reduction of C02 to methanol: Technical and design aspects. Journal of CO; Utilization 2023,71: 102477. https://doi.org/10.1016/j.jcou.2023. 102477.
- [33] Li P., Bi J., Liu J., Zhu Q., Chen C., Sun X., et al. In situ dual doping for constructing efficient C02-to-methanol electrocatalysts. Nat Commun 2022;13: 1965.https://doi.org/10.1038/541467—022-29698-3.
- [34] Cheon S., Li J., Wang H. In Situ Generated CO Enables High-Current C02 Reduction to Methanol in a Molecular Catalyst Layer. J Am Chem Soo 2024; 146: 16348—-54. https://doi.org/10.1021/jacs.4c05961.
- [35] Hori Y. C02 Reduction Using Electrochemical Approach. In: Sugiyama M, Fujii K, Nakamura S, editors. Solar to Chemical Energy Conversion: Theory and Application, Cham: Springer International Publishing; 2016, p. 191—21 1. https://doi.org/10.1007/978-3-319-25400-5_12.
- [36] Xu H., Rebollar D., He H., Chong L., Liu Y., Liu C., et al. Highly selective electrocatalytic C02 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat Energy 2020;5:623—32. https://doi.org/10. 103 8/s41560-020-0666-x.
- [37] Kortlever R., Shen J., Schouten KJ .P., Calle-Vallejo F., Koper M.T.M. Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. J Phys Chem Left 2015;6:4073—82. ttps://doi.org/10.1021/acs.jpclett.5b01559.
- [38] Niu W., Feng J., Chen J., Deng L., Guo W., Li H., et al. High-efficiency C3 electrosynthesis on a lattice-strain-stabilized nitrogen-doped Cu surface. Nat Commun 2024;15:7070. https://doi.org/10.1038/341467- 024-51478-4.
- [39] A focus on the electrolyte: Realizing CO; electroreduction from aqueous solution to pure water; Jia Yue Zhao, Yuanwei Liu, Wenjing Li, Chun Fang Wen, Huai Qin Fu, Hai Yang Yuan, Peng Fei Liu, Hua Gui Yang; Chem Catalysis, Volume 3, Issue 1, 2023, 100471, ISSN 2667-1093
- [40] Jessica Godin, Weizao Liu, Shan Ren, Chunbao Charles Xu, Advances in recovery and utilization of carbon dioxide: A brief review; Journal of Environmental Chemical Engineering; 2021 https://doi.org/10.1016/j.jece.2021.105644
- [41] Greene Shepherd, Methanol; Encyclopedia of Toxicology (Second Edition); https://doi.org/10.1016/B0-12- 369400-0/00603-7
- [42] Jamrozik A, Tutak W, Grab—Rogaliński K. Effects of Propanol on the Performance and Emissions of a Dual-Fuel Industrial Diesel Engine. Applied Sciences. 2022; 12(11):5674. https://doi.org/10.3390/app12115674
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bed2108b-27cf-4787-a539-5eaf5414fe07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.