PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The mobility of arsenic and its species in selected herbs

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Mobilność arsenu i jego form jonowych w wybranych ziołach
Języki publikacji
EN
Abstrakty
EN
The aim of the study was verification of the response of chamomile (Matricaria recutita (L.) Rauschert), peppermint (Mentha x piperita) lemon balm (Melissa officinalis L.), and sage (Salvia officinalis L.) on the elevated contents of inorganic As species in soils. The ability of herbs to accumulate arsenic was tested in pot experiment in which soils were contaminated by As(III) and As(V). The As(III), As(V), AB (arsenobetaine), MMA (monomethylarsonic acid) and DMA (dimethylarsinic acid) ions were successfully separated in the Hamilton PRP-X100 column with high performance-liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) techniques. The study examined total arsenic contents in soil and plants, as well as the mobility of the arsenic species from the soil into the studied plants. Peppermint demonstrated the highest arsenic concentration and phytoaccumulation among studied plants. The sequential chemical extraction showed that arsenic in the contaminated soil was mainly related to the oxide and organic-sulfi de fractions. The results showed that the oxidized arsenic form had a greater ability to accumulate in herbs and was more readily absorbed from the substrate by plants. Research has shown that soil contaminated with As(III) or As(V) has different effects on the arsenic content in plants. The plant responses to strong environmental pollution varied and depended on their type and the arsenic species with which the soil was contaminated. In most cases it resulted in the appearance of the organic arsenic derivatives.
PL
Celem badań było sprawdzenie tolerancji rumianku (Matricaria recutita (L.) Rauschert), mięty pieprzowej (Mentha x piperita), melisy lekarskiej (Melissa officinalis L.) i szałwii (Salvia officinalis L.) na zwiększoną zawartość nieorganicznych form jonowych arsenu w glebie. Zdolność ziół do akumulacji arsenu została przetestowana w doświadczeniu wazonowym, w którym gleby były zanieczyszczone przez As(III) lub As(V). Formy specjacyjne arsenu: As(III), As(V), AB (arsenobetaina), MMA (kwas monometylowy) i DMA (kwas dimetylowy) rozdzielono na kolumnie Hamilton PRP-X100 za pomocą wysokosprawnej chromatografi i cieczowej połączonej ze spektrometrią mas z plazmą wzbudzoną indukcyjnie (HPLC-ICP-MS). W pracy zbadano zawartość arsenu w glebie i ziołach, a także mobilność form arsenu z gleby do badanych roślin zielnych. Mięta charakteryzowała się największym stopniem fitoakumulacji i stężenia arsenu wśród badanych roślin. Sekwencyjna ekstrakcja chemiczna wykazała, że arsen w zanieczyszczonej glebie był głównie związany z frakcjami tlenkowymi i siarczkowo-organicznymi. Wyniki pokazały również, że utleniona forma arsenu miała większą zdolność do akumulacji w ziołach i była łatwiej absorbowana z podłoża przez badane rośliny. Badania wykazały, że odpowiedź roślin na stres arsenowy była charakterystyczna dla danego gatunku i zróżnicowana w zależności od formy arsenu, którym zanieczyszczono glebę. W większości przypadków skutkowało to pojawieniem się organicznych pochodnych arsenu.
Rocznik
Strony
86--98
Opis fizyczny
Bibliogr. 69 poz., tab., wykr.
Twórcy
  • Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, Poland
  • Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, Poland
  • Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, Poland
  • Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, Poland
Bibliografia
  • 1. Abbas, G., Murtaza, B., Bibi, I., Shahid, M., Niazi, N.K., Khad, M.I., Amjad, M., Hussain, M. & Hussain, N. (2018). Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects, International Journal of Environmental Research and Public Health, 15, pp. 59-104, DOI: 10.3390/ijerph15010059.
  • 2. Agostini, F., dos Santos, A.C.A., Rossato, M., Pansera, M.R., dos Santos, P.L.L.A., Serafini, R., Molon, R. & Moyna, P. (2009). Essential oil yield and composition of Lamiaceae species growing in southern Brazil, Brazilian Archives of Biology and Technology, 52, pp. 473-478, DOI: 10.1590/S1516-89132009000200026.
  • 3. Asaoka, S., Tahahashi, Y., Araki, Y. & Tanimizu, M. (2012). Comparison of antimony and arsenic behawior in an Ichnokawa River water-sediment system, Chemical Geology, 334, pp. 1-8, DOI: 10.1016/j.chemgeo.2012.09.047.
  • 4. Budzyńska, S., Magdziak, Z., Goliński, P., Niedzielski, P. & Mleczek, M. (2018). Arsenic forms in phytoextraction of this metalloid in organs of 2-year-old Acer platanoides seedlings, Environmental Science and Pollution Research, 25, pp. 27260-27273, DOI: 10.1007/s11356-018-2739-y.
  • 5. Cai, Y., Zhang, H., Yuan, G. & Li, F. (2017). Sources, speciation and transformation of arsenic in the gold mining impacted Jiehe River, China, Applied Geochemistry, 84, pp. 254-261, DOI: 10.1016/j.apgeochem.2017.07.001.
  • 6. Clark, M.W. (1923). Studies on oxidation-reduction. I. Introduction, Public Health Reports, 38, 10, pp. 443-455.
  • 7. Conforti, F., Sosa, S., Marrelli, M., Menichini, F., Statti, G.A., Uzunov, D., Tubaro, A., Menichini, F. & Loggia, R.D. (2008). In vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants, Journal of Ethnopharmacology, 116, pp. 144-151, DOI: 10.1016/j.jep.2007.11.015.
  • 8. Cornelis, R., Caruso, J., Crews, H. & Heumann, K. (2003). Handbook of Elemental speciation: Techniques and methodology, Chichester UK, John Wiley&Sons Ltd.
  • 9. Cornelis, R., Crews, H., Caruso, J. & Heumann, K.G. (2005). Handbook of Elemental Speciation II: Species in the Environment, Food, Medicine & Occupational Health, New York, John Wiley&Sons, Ltd.
  • 10. Das, A.K., Guardia, M. & Cervera, M.L. (2001). Literature survey of on-line elemental speciation in aqueous solutions, Talanta, 55, pp. 1-28.
  • 11. Donner, M.W., Javed, M.B., Shotyk, W. & Francesconi, K.A. (2017). Arsenic speciation in the lower Athabasca River watershed: A geochemical investigation of the dissolved and particulate phases, Environmental Pollution, 224, pp. 265-274, DOI: 10.1016/j.envpol.2017.02.004.
  • 12. Drobnik, M. & Latour, T. (2003). Research on the impact of technological processes, in the production of bottled waters, on their oxidation and reduction properties, Roczniki PZH, 54, 3, pp. 275-285. (in Polish)
  • 13. Dz.U. 2016 Regulation of the Minister of the Environment of 1 September 2016 on the method of conducting an assessment of the surface pollution. Journal of Laws No. 1395, (http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20160001395 (6.05.19)).
  • 14. Ellis, L.A. & Roberts, D.J. (1997). Chromatographic and hyphenated methods for elemental speciation analysis in environmental media, Journal of Chromatography A, 774, pp. 3-19.
  • 15. Esmaeili, A., Rustayian, A., Masoudi, S. & Nadji, K. (2006). Composition of the essential oils of Mentha aquatica L. and Nepeta meyeri Benth. from Iran, Journal of Essential Oil Research, 18, pp. 263-265, DOI: 10.1080/10412905.2006.9699082.
  • 16. Fijałkowski, K., Kacprzak, M., Grobelak, A. & Placek, A. (2012). The influence of selected soil parameters on the mobility of heavy metals in soils, Inżynieria i Ochrona Środowiska, 15, 1, pp. 81-92.
  • 17. Hedegaard, R.V., Rokkjær, I. & Sloth, J.J. (2013). Total and inorganic arsenic in dietary supplements based on herbs, other botanicals and algae-a possible contributor to inorganic arsenic exposure, Analytical and Bioanalytical Chemistry, 405, pp. 4429-4435, DOI: 10.1007/s00216-013-6835-z.
  • 18. Hong, S., Choi, S.D. & Khim, J.S. (2018). Arsenic speciation in environmental multimedia samples from the Youngsan River Estuary, Korea: A comparison between freshwater and saltwater, Environmental Pollution, 237, pp. 842-850, DOI: 10.1016/j.envpol.2017.11.020.
  • 19. Jabłońska-Czapla, M., Szopa, S., Grygoyć, K., Łyko, A. & Michalski, R. (2014a). Development and validation of HPLC-ICP-MS method for the determination inorganic Cr, As and Sb speciation forms and its application for Pławniowice reservoir (Poland) water and bottom sediments variability study, Talanta, 120, pp. 475-483, DOI: 10.1016/j.talanta.2013.11.092.
  • 20. Jabłońska-Czapla, M., Szopa, S. & Rosik-Dulewska, Cz. (2014b). Impact of mining dump on the accumulation and mobility of metals in the Bytomka river sediments, Archives of Environmental Protection, 40, 2, pp. 3-19, DOI: 10.2478/aep-2014-0013.
  • 21. Jabłońska-Czapla, M., Szopa, S., Zerzucha, P., Łyko, A. & Michalski, R. (2015). Chemometric and environmental assessment of arsenic, antimony, and chromium speciation form occurrence in a water reservoir subjected to thermal anthropopressure, Environmental Science and Pollution Research, 22, pp. 15731-15744, DOI: 10.1007/s11356-015-4769-z.
  • 22. Jabłońska-Czapla, M. (2015a). Metal(loids) speciation using HPLC-ICP-MS technique in Klodnica River, Upper Silesia, Poland, International Journal of Environmental and Ecological Engineering, 9, 4, pp. 333-338, DOI: 10.5281/zenodo.1100406.
  • 23. Jabłońska-Czapla, M. (2015b). Antimony, arsenic and chromium speciation studies in Biała Przemsza River (Upper Silesia, Poland) water by HPLC-ICP-MS, International Journal of Environmental Research and Public Health, 12, pp. 4739-4757, DOI: 10.3390/ijerph120504739.
  • 24. Kabata-Pendias, A. & Pendias, H. (1999). Biogeochemistry of trace elements. Warszawa, Poland, PWN. (in Polish)
  • 25. Kalač, P. (2010). Trace element contents in European species of wild growing edible mushrooms: A review for the period 2000-2009, Food Chemistry, 122, pp. 2-15, DOI: 10.1016/j.foodchem.2010.02.045.
  • 26. Koukamp, E.M., Wondimu, T. & Forbes, P.B.C. (2016). Metal and metalloid speciation in plants: Overview, instrumentation, approaches and commonly assessed elements, Trends in Analytical Chemistry, 77, pp. 87-99, DOI: 10.1016/j.trac.2015.10.007.
  • 27. Liu, X.J., Zhao, Q.L., Sun, G.X., Williams, P., Lu, X.J., Cai, J.Z. & Liu, W.J. (2013). Arsenic speciation in Chinese Herbal Medicines and human health implication for inorganic arsenic, Environmental Pollution, 172, pp. 149-154, DOI: 10.1016/j.envpol.2012.09.009.
  • 28. Łaszewska, A., Kowol, J., Wiechuła, D. & Kwapuliński, J. (2007). Bioaccumulation of metals in selected species of medicinal plants in the Silesian and Żywiec Beskids, Problemy Ekologii, 11, 6, pp. 285-291. (in Polish)
  • 29. Marcinkowska, M., Komorowicz, I. & Barałkiewicz, D. (2016). New procedure for multielemental speciation analysis of five toxic species: As(III), As(V), Cr(VI), Sb(III) and Sb(V) in drinking water samples by advanced hyphenated technique HPLC/ICP-DRC-MS, Analytica Chimica Acta, 920, pp. 102-111, DOI: 10.1016/j.aca.2016.03.039.
  • 30. Mihaljev, Z., Zivkov-Balos, M., Cupic, Z. & Jaksic, S. (2014). Levels of some microelements and essential heavy metals in herbal teas in Serbia, Acta Poloniae Pharmaceutica, 71, 3, pp. 385-391, DOI: 10.1016/j.aca.2016.03.039.
  • 31. Mizerna, K. & Król, A. (2018). Sequential extraction of heavy metals in a mineral-organic composite, Ecological Engineering, 19, 3, pp. 23-29, DOI: 10.12912/23920629/91025. (in Polish)
  • 32. Moldovan, M., Gomez, M.M., Palacios, M.A. & Camara, C. (1998). Arsenic speciation in water and human urine by HPLC/ICP/MS and HPLC/MO/HG/AAS, Microchemical Journal, 59, 1, pp. 89-99.
  • 33. Niedzielski, P., Siepak, M. & Siepak, J. (2000). Occurrence and content of arsenic, antimony and selenium in waters and other environmental elements, Annual Set The Environment Protection, 1, pp. 317-341. (in Polish)
  • 34. Niedzielski, P., Mleczek, M., Magdziak, Z., Siwulski, M. & Kozak, L. (2013). Selected arsenic species: As(III), As(V) and dimethylarsenic acid (DMAA) in xerocomus badius fruiting bodies, Food Chemistry, 141, pp. 3571-3577, DOI: 10.1016/j.foodchem.2013.06.103.
  • 35. Pantsar-Kallio, M. & Manninen, P.K.G. (1997). Simultaneous determination of toxic arsenic and chromium species in water samples by ion chromatography-inductively coupled plasma mass spectrometry, Journal of Chromatography A, 779, 1-2, pp. 139-146.
  • 36. Pavlovic, A., Masarovicova, E., Kralova, K. & Kubova, J. (2006). Response of chamomile plants (Matricaria recutita L.) to cadmium treatment, Bulletin of Environmental Contamination and Toxicology, 77, 5, pp. 763-771, DOI: 10.1007/s00128-006-1129-1.
  • 37. PN-ISO 11277:2005. Soil quality - Determination of granulometric composition in mineral soil material - Sieve and sedimentation method.
  • 38. PN-ISO 10390:1997. Soil quality - Determination of pH.
  • 39. PN-EN ISO 17294-2:2016-11. Water quality - mass spectrometry with inductively coupled plasma (ICP-MS) - Part 2: Determination of selected elements, including isotopes of uranium.
  • 40. Pytlakowska, K., Kita, A., Janoska, P., Połowniak, M. & Kozik, V. (2012). Multielement analysis of mineral and trace elements in medicinal herbs and their infusions, Food Chemistry, 135, pp. 494-501, DOI: 10.1016/j.foodchem.2012.05.002.
  • 41. Rajfur, M. (2015). Heavy metals phytocumulation in selected species of herbs, Proceedings of ECOpole, 9, 2, pp. 685-692, DOI: 10.2429/proc.2015.9(2)080. (in Polish)
  • 42. Rogula-Kozłowska, W., Błaszczak, B., Szopa, S., Klejnowski, K., Sówka, I., Zwoździak, A., Jabłońska, M. & Mathews, B. (2013). PM2.5 in the central part of Upper Silesia, Poland: concentrations, elemental composition, and mobility of components, Environmental Monitoring and Assessment, 185, pp. 581-601, DOI: 10.1007/s10661-012-2577-1.
  • 43. Rogula-Kozłowska, W., Majewski, G. & Czechowski, P.O. (2015). The size distribution and origin of elements bound to ambient particles: a case study of a Polish urban area, Environmental Monitoring and Assessment, 187, 5, pp. 240-256, DOI: 10.1007/s10661-015-4450-5.
  • 44. Roig-Navarro, A.F., Martinez-Bravo, Y., Lopez, F.J. & Hernandez, F. (2001). Simultaneous determination of arsenic species and chromium(VI) by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry, Journal of Chromatography A, 912, 2, pp. 319-327, DOI: 10.1016/S0021-9673(01)00572-6.
  • 45. Ronkart, S.N., Laurent, V., Carbonnelle, P., Mabon, N., Copin, A. & Barthelemy, J.P. (2007). Speciation of five arsenic species (arsenite, arsenate, MMAAV, DMAAV and AsBet) in different kind of water by HPLC-ICP-MS, Chemosphere, 66, 4, pp. 738-745, DOI: 10.1016/j.chemosphere.2006.07.056.
  • 46. Ruzickova, P., Szakova, J., Havlik, J. & Tlustos, P. (2015). The effect of soil risk element contamination level on the element contents in Ocimum basilicum L., Archives of Environmental Protection, 41, 2, pp. 47-53, DOI: 10.1515/aep-2015-0018.
  • 47. Samecka-Cymerman, A. & Kempers, A.J. (2000). Bioindication of heavy metals with aquatic macrophytes: The case of a stream polluted with power plant sewages in Poland, Journal of Toxicology and Environmental Health, Part A, 62, pp. 57-67.
  • 48. Selene, C.H., Chou, J. & De Rosa, C.T. (2003). Case studies - arsenic, International Journal of Hygiene and Environmental Health, 206, pp. 381-386.
  • 49. Semczuk, W. (1990). Toxicology, Państwowy Zakład Wydawnictw Lekarskich, Warszawa. (in Polish)
  • 50. Sukanya, C., Rajnarayan, S. & Parimal, P. (2018). Assessment of arsenic toxicity and tolerance characteristics of bean plants (Phaseolus vulgaris) exposed to different species of arsenic, Journal of Plant Nutrition, 41, 3, pp. 340-347, DOI:10.1080/01904167.2017.1385801.
  • 51. Sun, H.W., Qiao, F.X., Suo, R., Li, L.X. & Lian, S.X. (2004). Simultaneous determination of trace arsenic(III), antimony(III), total arsenic and antimony in Chinese medicinal herbs by hydride fluorescence spectrometry, Analytica Chimica Acta, 505, pp. 255-261, DOI: 10.1016/j.aca.2003.10.071.
  • 52. Szakova, J., Dziakova, M., Kozakova, A. & Tlustos, P. (2018). The risk element uptake by chamomile (Matricaria recutita (L.) Rauszert) growing in four different soils, Archives of Environmental Protection, 44, 4, pp. 12-21, DOI: 10.24425/aep.2018.122298.
  • 53. Szakova, J., Tlustos, P., Goessler, W., Pokorny, T., Findenig, S. & Balik, J. (2011). The effect of soil contamination level and plant origin on contents of arsenic, cadmium, zinc, and arsenic compounds in Mentha aquatica L., Archives of Environmental Protection, 37, 2, pp. 109-121.
  • 54. Szakova, J., Tlustos, P., Goessler, W., Findenig, S., Richtrová, E. & Balík, J. (2009). A comparison of arsenic mobility in Phaseolus vulgaris, Mentha aquatic, and Pteris cretica rhizosphere, Central European Journal of Biology, 4, 1, pp. 107-116, DOI: 10.2478/s11535-008-0048-z.
  • 55. Templeton, D.M., Ariese, F., Cornelis, R., Danielsson, L.G., Muntau, H., Van Leeuven, H.P. & Łobiński, R. (2000). Guidelines for terms related to chemical speciation and fractionation of elements definitions, structural aspects, and methodological approaches, Pure and Applied Chemistry, 72, pp. 1453-1470, DOI: 10.1351/pac200072081453.
  • 56. Tessier, A., Campbell, P.G. & Kisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals, Trace Metals Analytical Chemistry, 51, pp. 844-851.
  • 57. Tlustos, P., Goessler, W., Szakova, J. & Balik, J. (2002). Arsenic compounds in leaves and roots of radish grown in soil treated by arsenite, arsenate and dimethylarsilic acid, Applied Organometallic Chemistry, 16, pp. 216-220, DOI: 10.1002/aoc.282.
  • 58. Tokalioglu, S., Kartal, S. & Birol, G. (2003). Application of three-stage sequential extraction procedure for the determination of extractable metal contents in highway soils, Turkish Journal of Chemistry, 27, pp. 333-346.
  • 59. Vahidnia, A., van der Voet, G.B. & de Wolff, F.A. (2007). Arsenic neurotoxicity - a review, Human & Experimental Toxicology, 26, 10, pp. 823-832, DOI: 10.1177/0960327107084539.
  • 60. Voyslavov, T., Georgieva, S., Arpadjan, S. & Tsekova, K. (2013). Phytoavailability assessment of cadmium and lead polluted soils and accumulation by Matricaria chamomilla (chamomile), Biotechnology & Biotechnological Equipment, 27, 4, pp. 3939-3943, DOI: 10.5504/BBEQ.2013.0038.
  • 61. Wang, J., Zhao, F.J., Meharg, A.A., Raab, A., Feldmann, J. & McGrath, S.P. (2002). Mechanisms of aresenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation, Plant Physiology, 130, 3, pp. 1552-1561, DOI: 10.1104/pp.008185.
  • 62. Xie, M.Y., Li, L., Nie, S.P., Wang, X.R. & Lee, F.S.C. (2006). Determination of speciation of elements related to blood sugar in bioactive extracts from Cyclocarya paliurus leaves by FIA-ICP-MS, European Food Research and Technology, 223, pp. 202-209, DOI: 10.1007/s00217-005-0173-0.
  • 63. Yuan, C., Gao, E., He, B. & Jiang, G. (2007). Arsenic species and leaching characters in tea (Camellia sinensis), Food and Chemical Toxicology, 45, pp. 2381-2389, DOI: 10.1016/j.fct.2007.06.015.
  • 64. Zheljazkov, V.D., Craker, L.E. & Xing, B. (2006). Effects of CD, Pb and Cu on grown and essential oil contents in dill, peppermint, basil, Environmental and Experimental Botany, 58, 1, pp. 9-16, DOI: 10.1016/j.envexpbot.2005.06.008.
  • 65. Zheljazkov, V.D., Craker, L.E., Xing, B., Nielsen, N.E. & Wilcox, A. (2008a). Aromatic plant production on metal contaminated soils, Science of the Total Environment, 395, 2, pp. 51-62, DOI: 10.1016/j.scitotenv.2008.01.041.
  • 66. Zheljazkov, V.D., Jeliazkova, E.A., Kovacheva, N. & Dzurmanski, A. (2008b). Metal uptake by medicinal plant species grown in soils contaminated by a smelter, Environmental and Experimental Botany, 64, 3, pp. 207-216, DOI: 10.1016/j.envexpbot.2008.07.003.
  • 67. Zheljazkov, V.D. & Nielsen, N.E. (1996). Effect of heavy metals on peppermint and cornmint, Plant and Soil, 178, pp. 59-66.
  • 68. Zheng, J., Hintelmann, H., Dimock, B. & Dzurko, M.S. (2003). Speciation of arsenic in water, sediment, and plants of the Moira watershed, Canada, using HPLC coupled to high resolution ICP-MS, Analytical and Bioanalytical Chemistry, 377, 1, pp. 14-24, DOI: 10.1007/s00216-003-1920-3.
  • 69. Zurayk, R., Sukkariyah, B. & Baalbaki, R. (2001). Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution, Water, Air & Soil Pollution, 127, pp. 373-388, DOI: 10.1023/A:1005209823111.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bec49d35-9b87-40aa-8128-d7948f55ec72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.