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Abstract. In this paper, we study the following nonlinear first order partial differential
equation:

f(t, x, u, ∂tu, ∂xu) = 0 with u(0, x) ≡ 0.

The purpose of this paper is to determine the estimate of Gevrey order under the condition
that the equation is singular of a totally characteristic type. The Gevrey order is indicated
by the rate of divergence of a formal power series. This paper is a continuation of the
previous papers [Convergence of formal solutions of singular first order nonlinear partial
differential equations of totally characteristic type, Funkcial. Ekvac. 45 (2002), 187–208] and
[Maillet type theorem for singular first order nonlinear partial differential equations of totally
characteristic type, Surikaiseki Kenkyujo Kokyuroku, Kyoto University 1431 (2005), 94–106].
Especially the last-mentioned paper is regarded as part I of this paper.
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1. INTRODUCTION AND MAIN RESULTS

Let C be the set of complex numbers or a variable, t = (t1, . . . , td) ∈ Cd and x =
(x1, . . . , xn) ∈ Cn. We consider the following first order nonlinear partial differential
equation: {

f(t, x, u, ∂tu, ∂xu) = 0,

u(0, x) ≡ 0,
(1.1)
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where u(t, x) denotes the unknown function, ∂tu = (∂t1u, . . . , ∂tdu) and ∂xu is defined
similarly. Here, we assume that the function f(t, x, u, τ, ξ) (τ = (τ1, . . . , τd) ∈ Cd,
ξ = (ξ1, . . . , ξn) ∈ Cn) is holomorphic in a neighborhood of the origin of Cd × Cn ×
C× Cd × Cn, and is an entire function in τ variables for any fixed t, x, u and ξ.

The purpose of this paper is to characterize the rate of divergence of formal so-
lutions by using the “Gevrey order”, and such a characterization theorem is called
“Maillet type theorem”. In order to study the Maillet type theorem for the above
equation, we assume the following three assumptions.

Assumption 1.1 (Singular equation). The function f(t, x, u, τ, ξ) is singular in t
variables in the sense that

f(0, x, 0, τ, 0) ≡ 0 (for all x ∈ Cn near x = 0, and all τ ∈ Cd). (1.2)

Assumption 1.2 (Existence of formal solutions). The equation (1.1) has a formal
solution of the form

u(t, x) =
d∑

j=1

ϕj(x)tj +
∑

|α|≥2,|β|≥0
uα,βt

αxβ for some {ϕj(x)}dj=1 ∈ C{x}d, (1.3)

where C{x} denotes the set of holomorphic functions at x = 0, for α = (α1, . . . , αd) ∈
Nd (N = {0, 1, 2, . . .}) we define |α| = α1 + . . .+ αd and tα = tα1

1 . . . tαd

d , and |β| and
xβ are defined similarly for β = (β1, . . . , βn) ∈ Nn.

Assumption 1.3 (Totally characteristic type). The equation (1.1) is of totally char-
acteristic type with respect to {ϕj(x)} in (1.3), which means that the following con-
ditions hold:

{
fξk(0, x, 0, {ϕj(x)}, 0) 6≡ 0

fξk(0, 0, 0, {ϕj(0)}, 0) = 0
for k = 1, 2, . . . , n. (1.4)

Remark 1.4. The functions {ϕj(x)} in (1.3) are obtained as a solutions of the
following d-system of equations:

∂

∂ti
f(t, x, u(t, x), ∂tu(t, x), ∂xu(t, x))

∣∣∣∣
t=0

= fti(0, x, 0, {ϕj(x)}, 0) + fu(0, x, 0, {ϕj(x)}, 0)ϕi(x)

+
n∑

k=1

fξk(0, x, 0, {ϕj(x)}, 0)
∂ϕi
∂xk

(x) = 0, i = 1, 2, . . . , d.

(1.5)

In the case d = 1, a sufficient condition that the formal solution of (1.5) to be
convergent is obtained by Miyake and Shirai ([6]). In the case d ≥ 2, a sufficient
condition obtained by Shirai ([13]).
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Now we put ϕ(x) = (0, x, 0, {ϕj(x)}, 0) for simplicity of notation. We define func-
tions ai,j(x) (i, j = 1, . . . , d) and bk(x) (k = 1, . . . , n) by

ai,j(x) := fti,τj (ϕ(x)) + fu,τj (ϕ(x))ϕi(x) +

n∑

k=1

fτj ,ξk(ϕ(x))
∂ϕi
∂xk

(x), (1.6)

bk(x) := fξk(ϕ(x)). (1.7)

Remark 1.5. By the assumption of totally characteristic type, bk(x) satisfies
bk(x) 6≡ 0, bk(0) = 0 for all k = 1, 2, . . . , n.

Let M1 and M2 be the Jordan canonical forms of (ai,j(0)) and J(b1, . . . , bn)(0)
respectively, where J(b1, . . . , bn)(x) denotes the Jacobi matrix of (b1(x), . . . , bn(x)),
we denote them by

(ai,j(0)) ∼M1, J(b1, . . . , bn)(0) ∼M2.

Then the following two cases were already studied by the author’s previous papers.

(a) M1 and M2 are regular matrices with Poincaré condition (see Theorem 2.1 in §2
or [13]).

(b) M1 is a regular matrix with Poincaré condition and M2 is a nilpotent matrix (see
Theorem 2.2 in §2 or [15]).

In this paper we shall study the following two cases, and the main results are stated
as Theorem 1.6 and Theorem 1.7.

(a) M1 is a nilpotent matrix and M2 is a regular matrix with Poincaré condition.
(b) M1 and M2 are nilpotent matrices.

In order to state our main theorems, we prepare some notations.
In case (c), we put M1 and M2 by

M1 =




N1

N2

. . .
NI


 , where Nj =




0
δ 0

. . . . . .
δ 0


 of size dj(≥ 1),

M2 =




µ1

ν1 µ2

. . . . . .
νn−1 µn


 , δ = 1, νj = 0 or 1.

We note that d1 + d2 + . . .+ dI = d. If the size dj = 1, then Nj = (0).

Theorem 1.6. We consider case (c). Let Assumptions 1.1, 1.2, 1.3 and fu(ϕ(0)) 6= 0
be satisfied, and M1 and M2 be as above. Moreover, we assume the nonresona-
nce-Poincaré condition for M2, that is,

∣∣∣∣∣
n∑

k=1

µkβk + fu(ϕ(0))

∣∣∣∣∣ ≥ C(|β|+ 1) (1.8)
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by a positive constant C independent β ∈ Nn for all β. Then the formal solution u(t, x)
belongs to the Gevrey class of order at most (2d0, d0 + 1) by d0 := max{d1, . . . , dI}
(which is greater or equal to 1 ). This means that for the formal solution

u(t, x) =
∑

|α|≥1,|β|≥0
uα,βt

αxβ ,

the power series ∑

|α|≥1,|β|≥0

uα,β
|α|!2d0−1|β|!d0 t

αxβ

is convergent in a neighborhood of the origin.

In case (d), we have M1 and M2

M1 =




N1

N2

. . .
NI


 , where Nj =




0
δ 0

. . . . . .
δ 0


 of size dj(≥ 1),

M2 =




N̂1

N̂2

. . .
N̂J


 , where N̂k =




0
δ 0

. . . . . .
δ 0


 of size nk(≥ 1).

We note that d1 + d2 + . . .+ dI = d and n1 + n2 + . . .+ nJ = n.

Theorem 1.7. We consider case (d). Let Assumptions 1.1, 1.2, 1.3 and fu(ϕ(0)) 6= 0
be satisfied and M1 and M2 be as above. Then the formal solution u(t, x) belongs to
the Gevrey class of order at most 2n0 by n0 := max{d1, . . . , dI , n1, . . . , nJ}(≥ 1). This
means that for the formal solution

u(t, x) =
∑

|α|≥1,|β|≥0
uα,βt

αxβ ,

the power series ∑

|α|≥1,|β|≥0

uα,β
(|α|+ |β|)!2n0−1 t

αxβ

is convergent in a neighborhood of the origin.

2. RELATED RESULTS

For the formal solution u(t, x), we put v(t, x) = u(t, x) −∑d
j=1 ϕj(x)tj = O(|t|K)

(K ≥ 2) as a new known function. By substituting u = v +
∑d
j=1 ϕj(x)tj into the
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equation (1.1), v(t, x) satisfies the following singular first order nonlinear partial dif-
ferential equation:








d∑

i,j=1

ai,j(x)ti∂tj +

n∑

k=1

bk(x)∂xk
+ c(x)


 v(t, x)

=
∑

|α|=K
dα(x)tα + fK+1(t, x, v(t, x), ∂tv(t, x), ∂xv(t, x)),

v(t, x) = O(|t|K),

(2.1)

where c(x) = fu(ϕ(x)), dα(x) is holomorphic in a neighborhood of the origin, and
fK+1(t, x, v, τ, ξ) is also holomorphic in a neighborhood of the origin with the Taylor
expansion

fK+1(t, x, v, τ, ξ) =
∑

V (α,p,q,r)≥K+1

fαpqr(x)tαvpτ qξr. (2.2)

Here we used the following notation:

V (α, p, q, r) = |α|+Kp+ (K − 1)|q|+K|r|, (2.3)

which denotes the order of zeros in t for each terms tαv(t, x)p(∂tv(t, x))q(∂xv(t, x))r.
For the equation (2.1), if bk(x) ≡ 0 (k = 1, 2, . . . , n), (2.1) is written as follows:








d∑

i,j=1

ai,j(x)ti∂tj + c(x)


 v(t, x)

=
∑

|α|=K
dα(x)tα + fK+1(t, x, v(t, x), ∂tv(t, x), ∂xv(t, x)),

v(t, x) = O(|t|K).

This equation is called the Fuchsian equation with respect to t variables. To this
equation, a lot of Maillet type theorems have been studied by many mathematicians.
For example, Gérard-Tahara, and Miyake-Shirai study the nonlinear case, which is
found in the book or papers [4,6,7] and [8]. They obtained the Maillet type theorem,
which include the convergent case.

The case of bk(x) 6≡ 0 and bk(0) = 0, which is the case of totally characteristic type,
Chen-Tahara studied the convergence of a formal solution in the case when (t, x) ∈ C2

and bk(x) = O(x) with Poincaré condition ([3]). This result was extended to the case
of several space variables by Chen-Luo ([1]). Moreover, these results were generalized
by the author to the case of several time-space variables ([13]) (see Theorem 2.1).

On the other hand, Chen-Luo-Tahara studied the Maillet type theorem in the case
of (t, x) ∈ C2 and bk(x) = O(xK) (K ≥ 2) ([2]), and they obtained that the formal
solution belongs to the Gevrey class of order K/(K − 1). Their Maillet type theorem
was generalized by the author to the case of several time-space variables ([15]) (see
Theorem 2.2).
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The statements of [13] and [15] are written as follows.

Theorem 2.1 ([13]). If all eigenvalues {λj}j=1,2,...,d of (ai,j(0))i,j=1,2,...,d and all
eigenvalues {µk}k=1,...,n of the Jacobi matrix J(b1, . . . , bn)(0) satisfy the Poincaré
condition Ch({λj}, {µk}) 63 0 (convex hull of points {λj} and {µk}), then the formal
solution converges in a neighborhood of the origin.

Theorem 2.2 ([15]). If all eigenvalues {λj}j=1,...,d of (ai,j(0))i,j=1,2,...,d satisfy the
Poincaré condition Ch({λj}) 63 0, and J(b1, . . . , bn)(0) is nilpotent, then the formal
solution belongs to the Gevrey class of order at most 2d0 in (t, x), where d0 denotes
the maximum of size of nilpotent Jordan blocks of J(b1, . . . , bn)(0).

3. REFINEMENT OF THEOREM 1.6

In order to prove Theorem 1.6, we shall estimate the Gevrey order in each variables
(t1, . . . , td, x1, . . . , xn) of formal solution of (2.1). To do so, we reduce (2.1) to a more
exact form.

First, we set âi,j(x) = ai,j(0)−ai,j(x) = O(|x|). Then the vector field with respect
to t variables is written by

d∑

i,j=1

ai,j(x)ti∂tj = (t1, . . . , td)



a1,1(0) · · · a1,d(0)

...
. . .

...
ad,1(0) · · · ad,d(0)






∂t1
...
∂td


−

d∑

i,j=1

âi,j(x)ti∂tj .

Here we introduce new variables τ = (τ (1), . . . , τ (I)) ∈ Cd, (τ (j) = (τj,1, . . . , τj,dj ) ∈
Cdj , d = d1 + . . .+ dI) by

(τ (1), . . . , τ (I)) = (t1, . . . , td)P, P−1(ai,j(0))P = M1.

By this linear change of variables, the above vector field is reduced to

(τ (1), . . . , τ (I))



N1

. . .
NI






∂τ(1)

...
∂τ(I)


−

∑

i,j,k,l

αijkl(x)τi,j∂τk,l
,

where
∑
i,j,k,l is a summation taken over

1 ≤ i ≤ I, 1 ≤ j ≤ di, 1 ≤ k ≤ I, 1 ≤ l ≤ dk.

Next, we write the differential operator with respect to x variables by the following
form:

n∑

k=1

bk(x)∂xk
= (x1, . . . , xn)J(b1, . . . , bn)(0)



∂x1

...
∂xn


−

n∑

k=1

b̂k(x)∂xk
,
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where b̂k(x) = O(|x|2) (k = 1, . . . , n). Then we introduce new variables ξ =
(ξ1, . . . , ξn) ∈ Cn by

(ξ1, . . . , ξn) = (x1, . . . , xn)Q, Q−1J(b1, . . . , bn)(0)Q = M2.

By this linear change of variables x, the above vector field is reduced to
n∑

k=1

µkξk∂ξk +
n−1∑

k=1

νkξk+1∂ξk −
n∑

k=1

βk(ξ)∂ξk ,

where βk(ξ) = O(|ξ|2) (k = 1, . . . , n).
Hereafter we rewrite (τ, ξ) by (t, x) again. Then the equation (2.1) is reduced to

the following one.




(N +D + ∆)v =
∑

i,j,k,l

αijkl(x)ti,j∂tk,l
v +

n∑

k=1

βk(x)∂xk
v

+η(x)v +
∑

|α|=K
ζα(x)tα + gK+1(t, x, v, ∂tv, ∂xv),

v(t, x) = O(|t|K),

(3.1)

where the operators N , D and ∆ are

N =
I∑

j=1

dj−1∑

k=1

δtj,k+1∂tj,k , (3.2)

D =

n∑

k=1

µkxk∂xk
+ c(0), (c(0) = fu(ϕ(0))), (3.3)

∆ =

n−1∑

k=1

νkxk+1∂xk
, (3.4)

respectively. Moreover, η(x) = c(0) − c(x)(= fu(ϕ(0)) − fu(ϕ(x))) = O(|x|), and
gK+1(t, x, v, τ, ξ) has the similar Taylor expansion with (2.2).

In order to give our refinement form, we prepare notations and definitions.

Definition 3.1 (Borel transform). Let R≥1 = {x ∈ R |x ≥ 1}, and let s =
(s1, . . . , sd) ∈ (R≥1)d, σ = (σ1, . . . , σn) ∈ (R≥1)n. For a formal power series
u(t, x) =

∑
uα,βt

αxβ , we define the s-Borel transform in t, the σ-Borel transform
in x and the (s,σ)-Borel transform in (t, x) as follows, respectively:

– s-Borel transform in t : Bst (u)(t, x) =
∑ uα,β |α|!

(s · α)!
tαxβ ,

– σ-Borel transform in x : Bσx (u)(t, x) =
∑ uα,β |β|!

(σ · β)!
tαxβ ,

– (s,σ)-Borel transform in (t, x) : B(s,σ)
t,x (u)(t, x) = (Bst ◦ Bσx )(u) = (Bσx ◦ Bst )(u),

where s · α denotes s · α = s1α1 + . . . + sdαd, (σ · β is also a similar definition) and
a! = Γ(a+ 1).
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Definition 3.2 (Gevrey class). We define u(t, x) ∈ G(s,σ)
t,x , which is called of (s,σ)

Gevrey class in (t, x) variables, if B(s,σ)
t,x (u)(t, x) is convergent in a neighborhood of

the origin.

By an easy calculation, the following relation holds:

B(s,σ)
t,x (u)(t, x) ∈ G(s

′,σ′)
t,x =⇒ u(t, x) ∈ G(s+s

′−1d,σ+σ′−1n)
t,x ,

where 1d = (1, . . . , 1) ∈ Nd.
Now, we obtain the following refinement of Theorem 1.6.

Theorem 3.3. Let sj = (1, 2, . . . , dj) ∈ Ndj (j = 1, 2, . . . , I), and let d0 =
max{d1, d2, . . . , dI}. Then under the assumptions 1.1, 1.2, 1.3 and the nonresona-
nce-Poincaré condition (1.8), the formal solution of (7.1) belongs to the Gevrey class
of order at most (s′,σ′) by

(s′,σ′) =

{
(s+ d10,d

2
0 + 1n) ∈ Nd+n if αijkl(x) 6≡ 0 for some i, j, k, l,

(s+ d′,1n) ∈ Nd+n if αijkl(x) ≡ 0 for all i, j, k, l,

where s = (s1, . . . , sI) ∈ Nd, d10 = (d0, . . . , d0) ∈ Nd, d20 = (d0, . . . , d0) ∈ Nn and
d′ = (d′, . . . , d′) ∈ Rd, where

d′ = max
α,p,q,r

{
d0

V (α, p, q, r)−K

}
(≤ d0). (3.5)

Theorem 1.6 is an immediate consequence of Theorem 3.3. Indeed, all the com-
ponents of (s1, . . . , sI) are estimated by d0. Therefore, all the components of s′ are
estimated by 2d0, which gives the conclusion of Theorem 1.6.

4. EXAMPLES FOR THEOREM 3.3

In this section, we give typical examples for Theorem 3.3.

Example 4.1. Let t = (t1, t2) ∈ C2 and x ∈ C. We consider the equation
{

(t2∂t1 + x∂x + 1)u = x(t1 + t2)2 + xt1∂t2u+ (t2∂t2u)(∂xu),

u(t, x) = O(|t|2).

In the linear part of derivatives in the right hand side of the equation, there exists
a derivative related to t. Hence, by Theorem 3.3, the formal solution belongs to the
Gevrey class of order at most (s1, s2, σ) = (3, 4, 3).

Example 4.2. Let t = (t1, t2) ∈ C and x ∈ C. We consider the equation
{

(t2∂t1 + x∂x + 1)u = x(t1 + t2)2 + x2t1∂xu+ (t2∂t2u)(∂xu),

u(t, x) = O(|t|2).

In the linear part of derivatives in the right hand side of the equation, there does not
exist a derivative related to t. Hence, by Theorem 3.3, the formal solution belongs to
the Gevrey class of order at most (s1, s2, σ) = (3, 4, 1).
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5. PROOF OF THEOREM 3.3

We define the set of homogeneous polynomials of degree L in t and degree M in x by

C[t]L[x]M =

{ ∑

|α|=L,|β|=M
uα,βt

αxβ
∣∣∣ uαβ ∈ C

}
. (5.1)

First we give a following lemma.

Lemma 5.1.

(i) The operator P := N + D + ∆ is invertible on C[t]L[x]M for all L ≥ K and
M ≥ 0.

(ii) Let s = (s1, . . . , sI) ∈ Nd (sj = (1, 2, . . . , dj) ∈ Ndj ), and T = t1 + . . .+ td ∈ C,
X = x1 + . . . + xn ∈ C. For u(t, x) ∈ C[t]L[x]M , if a majorant relation
Bst (u)(t, x) � WL,MT

LXM (WL,M ≥ 0) holds, then the following majorant
relation holds by a positive constant C0 independent of L and M .

Bst (P−1u)(t, x)� C0

M + 1
WL,MT

LXM = C0(X∂X + 1)−1WL,MT
LXM . (5.2)

We omit the proof of Lemma 5.1, since the similar proposition is already proved
in [14, Lemma 1].

By Lemma 5.1, the operator P is invertible on C[[t, x]]K by

C[[t, x]]K =
⋃

L≥K,M≥0
C[t]L[x]M .

Here we put U(t, x) = Pv(t, x) as a new unknown function. Then U(t, x) satisfies
the following:





U(t, x) =
∑

i,j,k,l

αijkl(x)ti,j∂tk,l
P−1U +

n∑

k=1

βk(x)∂xk
P−1U

+η(x)P−1U +
∑

|α|=K
ζα(x)tα

+gK+1(t, x, P−1U, ∂tP−1U, ∂xP−1U),

U(t, x) = O(|t|K).

(5.3)

For the equation (5.3), we apply the Borel transform of order s = (s1, . . . , sI) ∈ Nd
in t, then the equation is reduced to the following:

Bst (U)(t, x) = Bst


∑

i,j,k,l

αijkl(x)ti,j∂tk,l
P−1U


+ Bst

(
n∑

k=1

βk(x)∂xk
P−1U

)

+ Bst
(
η(x)P−1U

)
+
∑

|α|=K

ζα(x)|α|!
(s · α)!

tα

+ Bst
{
gK+1(t, x, P−1U, ∂tP

−1U, ∂xP
−1U)

}
.

(5.4)
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In order to estimate the Borel transforms of products and derivatives with respect
to t and x, we give the following lemma.

Lemma 5.2.

(i) For two formal power series u(t, x), v(t, x) ∈ C[[t, x]], there exists a positive con-
stant C1 depending only on s such that the following majorant relation holds.

Bst (uv)(t, x)� C1Bst (|u|)(t, x)× Bst (|v|)(t, x), (5.5)

where for u(t, x) =
∑
uαβt

αxβ, |u|(t, x) is defined by |u|(t, x) =
∑ |uαβ |tαxβ.

(ii) We put T = t1 + . . . + td and X = x1 + . . . + xn. Let W (T,X) be a formal
power series in T and X. If Bst (u)(t, x)�W (T,X), then the following majorant
relations hold by a positive constant C2.

Bst
(
∂ti,jP

−1u
)

(t, x)� C2∂T (T∂T )j−1(X∂X + 1)−1W (T,X)

� C2∂T (T∂T )j−1W (T,X),
(5.6)

Bst
(
∂xk

P−1u
)

(t, x)� C2∂X(X∂X + 1)−1W (T,X)� C2 × S(W )(T,X), (5.7)

where S(W )(T,X) is the shift function in X defined by

S(W )(T,X) =
W (T,X)−W (T, 0)

X
. (5.8)

We omit the proof of Lemma 5.2, since the similar proposition is already proved
in [14, Lemma 2].

By Lemma 5.2, if a majorant relation Bst (U)(t, x) � W (T,X) holds, then there
exists a positive constant C3 > 0 such that the following majorant relations hold.

Bst
(
αijkl(x)tij∂tkl

P−1U
)

(t, x)� C3|αijkl|(X)(T∂T )lW (T,X), (5.9)

Bst
(
βk(x)∂xk

P−1U
)

(t, x)� C3|βk|(X)S(W )(T,X), (5.10)

Bst
(
η(x)P−1U

)
(t, x)� C3|η|(X)W (T,X), (5.11)

∑

|α|=K

ζα(x)|α|!
(s · α)!

tα �


 ∑

|α|=K
|ζα|(X)


TK =: ζ(X)TK , (5.12)

Bst
(
gK+1(t, x, P−1U, ∂tP

−1U, ∂xP
−1U)

)

� |gK+1|(T,X,C3W, {C3∂T (T∂T )j−1W}i,j , {C3S(W )}k).
(5.13)

We remark that 1 ≤ j ≤ d0 for j in (5.13). Moreover, since W (T,X) is a majo-
rant series of Bst (u)(t, x), we have W (T,X) � 0. Therefore, we obtain the following
majorant relation.

XS(W )(T,X) = W (T,X)−W (T, 0)�W (T,X). (5.14)
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Since |βk|(X) = O(X2), we put a holomorphic function |β̂k|(X) by |β̂k|(X) :=
|βk|(X)/X = O(X). Then the following majorant relation holds.

|βk|(X)S(W ) =
|βk|(X)

X
·XS(W )� |βk|(X)

X
W = ˆ|βk|(X)W.

We consider the following equation.




W =
∑

i,j,k,l

α̃ijkl(X)(T∂T )lW +

n∑

k=1

β̃k(X)W + η̃(X)W + ζ(X)TK

+|gK+1|(T,X,C3W, {C3∂T (T∂T )j−1W}i,j , {C3S(W )}k),

W = O(TK),

(5.15)

where α̃ijkl(X) = C3|αijkl|(X), β̃k(X) = C3|β̂k|(X), η̃(X) = C3|η|(X). These are
all holomorphic functions in a neighborhood of X = 0 and vanish at X = 0. By the
construction of this equation, it is easily seen that

Bst (U)(t, x)�W (T,X).

Here we put F (X) = 1 −∑n
k=1 β̃k(X) − η̃(X). Since F (0) = 1 6= 0, 1/F (X) is

holomorphic in a neighborhood of X = 0. Therefore, by multiplying 1/F (X) for both
sides, the equation (5.15) is reduced to the following.

W =
∑

i,j,k,l

α̂ijkl(X)(T∂T )lW + ζ̂(X)TK

+GK+1(T,X,C3W, {C3∂T (T∂T )j−1W}i,j , {C3S(W )}k),

where
α̂ijkl(X) = α̃ijkl(X)/F (X) = O(X), ζ̂(X) = ζ(X)/F (X)

and
GK+1(T,X, u, τ, ξ) = |gK+1|(T,X, u, τ, ξ)/F (X).

For the equation (5.16), the following lemma holds.

Lemma 5.3. If α̂ijkl(X) 6≡ 0 for some i, j, k, l, then the formal solution W (T,X)

belongs to the Gevrey class G(d0+1,d0+1)
T,X . If α̂ijkl(X) ≡ 0 for all i, j, k, l, then the

formal solution W (T,X) belongs to the Gevrey class G(d
′+1,1)

T,X where d′ is the constant
defined by (3.5).

By Lemma 5.3, which will be proved in the next section, W (T,X) ∈ G(d0+1,d0+1)
T,X

if α̂ijkl(X) 6≡ 0 for some i, j, k, l or W (T,X) ∈ G(d
′+1,1)

T,X if α̂ijkl(X) ≡ 0 for all i, j, k, l.
On the other hand, for s = (s1, . . . , sI) (si = (1, 2, . . . , di)), the majorant relation
Bst (U)(t, x)�W (T,X) holds. By combining these properties, we have

Bst (U)(t, x) = B(s,1n)
t,x (U)(t, x) ∈ G(d0+1,d0+1)

T,X or G(d
′+1,1)

T,X .
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Therefore, the Gevrey order (s′,σ′) of U(t, x) is obtained by

s′ =





s+ (d0 + 1, . . . , d0 + 1)− 1d = s+ (d0, . . . , d0),
if α̂ijkl(X) 6≡ 0 for some i, j, k, l,

s+ (d′ + 1, . . . , d′ + 1)− 1d = s+ (d′, . . . , d′),
if α̂ijkl(X) ≡ 0 for all i, j, k, l,

σ′ =





1n + (d0 + 1, . . . , d0 + 1)− 1n = (d0 + 1, . . . , d0 + 1),
if α̂ijkl(X) 6≡ 0 for some i, j, k, l,

1n + 1n − 1n = 1n, if α̂ijkl(X) ≡ 0 for all i, j, k, l,

which proves Theorem 3.3.

6. PROOF OF LEMMA 5.3

First we consider the case when α̂ijkl(X) 6≡ 0 for some i, j, k, l. Let α̂ijkl(X) =∑
M≥1 αijklMX

M be the Taylor expansion of α̂ijkl(X). For the sake of simplicity of
notation, we put C3 = 1. By putting W (T,X) =

∑
L≥KWL(X)TL and by substitut-

ing this into (5.16), we obtain the following recurrence formula for {WL(X)}L≥K .

WK(X) =
∑

i,j,k,l

α̂ijkl(X)KlWK(X) + ζ̂(X), (6.1)

WL(X) =
∑

i,j,k,l

α̂ijkl(X)LlWL(X)

+
∑′

Gαpqr(X)

p∏

k=1

WLk
(X)

×
I∏

i=1

di∏

j=1

qij∏

l=1

(Lijl)
jWLijl

(X)
n∏

k=1

rk∏

l=1

S(WLkl
)(X),

(6.2)

where the summation
∑′ is taken over V (α, p, q, r) ≥ K + 1 and

|α|+
p∑

k=1

Lk +

I∑

i=1

di∑

j=1

qij∑

l=1

(Lijl − 1) +

n∑

k=1

rk∑

l=1

Lkl = L. (6.3)

The first recurrence formula (6.1) is an easier situation than (6.2). Therefore, in the
following, we consider the case of (6.2).

We put WL(X) =
∑
M≥0WL,MX

M . By substituting this in the formula (6.2), we
get the following recurrence formula for {WL,M}L≥K,M≥0.

WL,M =
∑

i,j,k,l

M∑

M1=1

LlαijklM1
WL,M−M1

+
∑′∑′′

GαpqrM ′

p∏

k=1

WLk,Mk

I∏

i=1

di∏

j=1

qij∏

l=1

(Lijl)
jWLijl,Mijl

n∏

k=1

rk∏

l=1

WLkl,Mkl+1,

(6.4)
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where the summation
∑′′ is taken over

M ′ +
p∑

k=1

Mk +
I∑

i=1

di∑

j=1

qij∑

l=1

Mijl +
n∑

k=1

rk∑

l=1

Mkl = M. (6.5)

We set YL,M = WL,M/(L+M)!d0 . Then {YL,M} satisfies the following recurrence
formula.

YL,M =
∑

i,j,k,l

M∑

M1=1

Ĉ1αijklM1
YL,M−M1

+
∑′∑′′

Ĉ2GαpqrM ′

p∏

k=1

YLk,Mk

I∏

i=1

di∏

j=1

qij∏

l=1

YLijl,Mijl

n∏

k=1

rk∏

l=1

YLkl,Mkl+1,

(6.6)

where Ĉ1, Ĉ2 = Ĉ2(α, p, q, r) and

Ĉ1 =
Ll(L+M −M1)!d0

(L+M)!d0
,

Ĉ2 =
1

(L+M)!d0
×

I∏

i=1

di∏

j=1

qij∏

l=1

(Lijl)
j

×
p∏

k=1

(Lk +Mk)!d0
I∏

i=1

di∏

j=1

qij∏

l=1

(Lijl +Mijl)!
d0

n∏

k=1

rk∏

l=1

(Lkl +Mkl + 1)!d0 .

Since l ≤ d0 and M1 ≥ 1, we get the following estimate for Ĉ1.

Ĉ1 =
Ll(L+M −M1)!d0

(L+M)!d0
≤ Ll(L+M − 1)!d0

(L+M)!d0
=

Ll

(L+M)d0
≤ 1.

For the estimate of Ĉ2, we need the following lemma which is proved in [12, Lemma 6].

Lemma 6.1. Let L and mj be nonnegative integers such that mj ≥ L for all
j = 1, 2, . . . , n. Then the following inequality holds:

m1! . . .mn! ≤ (L!)n−1(m1 + . . .+mn − (n− 1)L)!. (6.7)
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By using Lemma 6.1, we can estimate Ĉ2 = Ĉ2(α, p, q, r) as follows.

Ĉ2 =

I∏

i=1

di∏

j=1

qij∏

l=1

Lijl
j

(L+M)!d0

×
p∏

k=1

(Lk +Mk)!d0
I∏

i=1

di∏

j=1

qij∏

l=1

(Lijl +Mijl)!
d0

n∏

k=1

rk∏

l=1

(Lkl +Mkl + 1)!d0

≤

I∏

i=1

di∏

j=1

qij∏

l=1

Lijl
j−d0

(L+M)!d0

×





p∏

k=1

(Lk +Mk + 1)!
I∏

i=1

di∏

j=1

qij∏

l=1

(Lijl +Mijl + 1)!

n∏

k=1

rk∏

l=1

(Lkl +Mkl + 1)!





d0

≤ (K + 1)!d0(p+|q|+|r|)

(L+M)!d0

×




p∑

k=1

(Lk +Mk + 1) +
I∑

i=1

di∑

j=1

qij∑

l=1

(Lijl +Mijl + 1)

+
n∑

k=1

rk∑

l=1

(Lkl +Mkl + 1)− (K + 1)(p+ |q|+ |r| − 1)

)
!d0

=
Ĉ
p+|q|+|r|
3 (L+M − |α| −M ′ + p+ 2|q|+ |r| − (K + 1)(p+ |q|+ |r| − 1))!d0

(L+M)!d0

(we put Ĉ3 := (K + 1)!d0)

=
Ĉ
p+|q|+|r|
3 (L+M +K + 1− V (α, p, q, r))!d0

(L+M)!d0
≤ Ĉp+|q|+|r|3 ,

where

V (α, p, q, r) = |α|+Kp+ (K − 1)|q|+K|r|.

By these observations, (6.6) is estimated by

YL,M ≤
∑

i,j,k,l

M∑

M1=1

αijklM1
YL,M−M1

+
∑′∑′′

GαpqrM ′

p∏

k=1

Ĉ3YLk,Mk

I∏

i=1

di∏

j=1

qij∏

l=1

Ĉ3YLijl,Mijl

n∏

k=1

rk∏

l=1

Ĉ3YLkl,Mkl+1.
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Let us consider the following recurrence formula for {ZL,M}L≥K,M≥0:

ZK,M =
∑

i,j,k,l

M∑

M1=1

αijklM1
ZK,M−M1

+ ζ̂M ,

ZL,M =
∑

i,j,k,l

M∑

M1=1

αijklM1ZL,M−M1

+
∑′∑′′

GαpqrM ′

p∏

k=1

Ĉ3ZLk,Mk

I∏

i=1

di∏

j=1

qij∏

l=1

Ĉ3ZLijl,Mijl

n∏

k=1

rk∏

l=1

Ĉ3ZLkl,Mkl+1.

By this construction of the recurrence formula, we have YL,M ≤ ZL,M .
We remark that these recurrence formulas are obtained by the following equation:

Z(T,X) =
∑

i,j,k,l

α̂ijkl(X)Z + ζ̂(X)TK

+GK+1

(
T,X, Ĉ3Z,

{
Ĉ3Z

T

}
,
{
Ĉ3S(Z)

}) (6.8)

with Z(T,X) = O(TK). By dividing both sides of the equation by 1−∑i,j,k,l α̂ijkl(X),
the equation is reduced to the following one:

Z(T,X) = ζ̄(X)TK +HK+1

(
T,X, Ĉ3Z,

{
Ĉ3Z

T

}
,
{
Ĉ3S(Z)

})
, (6.9)

where
ζ̄(X) = ζ̂(X)/

(
1−

∑

i,j,k,l

α̂ijkl(X)
)
∈ C{X}

and
HK+1 = GK+1/

(
1−

∑

i,j,k,l

α̂ijkl(X)
)

is holomorphic in a neighborhood of the origin.
By this construction of the equation (6.9), we have the following majorant relation

between Z and Y .

Z(T,X)� Y (T,X) = B(d0+1,d0+1)
T,X (W )(T,X).

We put ϕ(T,X) = Z(T,X)/T as a new unknown function. Then ϕ(T,X) satisfies the
following.

ϕ(T,X) = ζ̄(X)TK−1 +
1

T
HK+1(T,X, Ĉ3Tϕ, {Ĉ3ϕ}, {Ĉ3TS(ϕ)}) (6.10)

with ϕ(T,X) = O(TK−1).



704 Akira Shirai

We decompose the formal solution ϕ(T,X) as follows.

ϕ(T,X) = ϕ1(X)TK−1 + ϕ2(X)TK + TKψ(T,X), ψ(0, X) ≡ 0.

By an easy calculation, ϕ1(X) and ϕ2(X) are given by

ϕ1(X) = ζ̄(X),

ϕ2(X) =
∑

|α|+Kp+(K−1)|q|+K|r|=K+1

Hαpqr(X)Ĉ
p+|q|+|r|
3 ϕ1(X)p+|q|S(ϕ1)(X)|r|.

We remark that these are holomorphic in a neighborhood of X = 0.
Moreover, ψ(T,X) satisfies the following equation:

{
ψ(T,X) = H(T,X, Tψ, TS(ψ)),

ψ(0, X) ≡ 0,
(6.11)

where

H(T,X, η1, η2) =
1

TK+1

[
HK+1

(
T,X, Ĉ3ϕ1(X)TK + Ĉ3ϕ2(X)TK+1 + Ĉ3T

Kη1,

{Ĉ3ϕ1(X)TK−1 + Ĉ3ϕ2(X)TK + Ĉ3T
Kη1},

{Ĉ3S(ϕ1)(X)TK + Ĉ3S(ϕ2)(X)TK+1 + Ĉ3T
Kη2}

)]

−
∑

|α|+Kp+(K−1)|q|+K|r|=K+1

Hαpqr(X)Ĉ
p+|q|+|r|
3 ϕ1(X)p+|q|S(ϕ1)(X)|r|.

We remark that the order of zeros in T of H(T,X, Tψ(T,X), TS(ψ)(T,X)) is greater
than or equal to 1.

In order to prove the convergence of ψ(T,X), it is sufficient to show the following:

Lemma 6.2. There exists a small positive constant ε > 0 such that ψε(ρ) := ψ(ερ, ρ)
is convergent in a neighborhood of ρ = 0.

The proof of Lemma 6.2 can be found in [13], so we omit it.
Lemma 6.2 implies that ϕ(T,X) is convergent. Therefore, the following majorant

relations hold: In the case α̂ijkl(X) 6≡ 0 for some i, j, k, l,

C{T,X} 3 Tϕ(T,X) = Z(T,X)� Y (T,X) = B(d0+1,d0+1)
T,X (W )(T,X).

Next we consider the case when α̂ijkl(X) ≡ 0 for all i, j, k, l. In this case, the argu-
ment follows analogously from above by removing the term

∑
i,j,k,l α̂ijkl(X)(T∂T )lW .

Therefore, by putting W (T,X) =
∑
L≥K

∑
M≥0WL,MT

LXM , we get the following
recurrence formula for {WL,M}L≥K,M≥0

WL,M =

′∑∑′′
GαpqrM ′

p∏

k=1

WLk,Mk

I∏

i=1

di∏

j=1

qij∏

l=1

(Lijl)
jWLijl,Mijl

n∏

k=1

rk∏

l=1

WLkl,Mkl+1,

(6.12)
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where the summation
∑′ and ∑′′ are taken by in the same way as (6.3) and (6.5),

respectively. In this case we put YL,M = WL,M/L!d
′
, where d′ is defined by (3.5).

Then {YL,M} satisfies the following recurrence formula.

YL,M =
∑′∑′′

C̃2GαpqrM ′

p∏

k=1

YLk,Mk

I∏

i=1

di∏

j=1

qij∏

l=1

YLijl,Mijl

n∏

k=1

rk∏

l=1

YLkl,Mkl+1,

(6.13)
where C̃2 = C̃2(α, p, q, r) and

C̃2 =

∏I
i=1

∏di
j=1

∏qij
l=1(Lijl)

j ×∏p
k=1 Lk!d

′ ∏I
i=1

∏di
j=1

∏qij
l=1 Lijl!

d′ ∏n
k=1

∏rk
l=1 Lkl!

d′

L!d′
.

By using Lemma 6.1, for an arbitrary L ∈ N, C̃2 is estimated by

C̃2 =

∏I
i=1

∏di
j=1

∏qij
l=1(Lijl)

j × {∏p
k=1 Lk!

∏I
i=1

∏di
j=1

∏qij
l=1 Lijl!

∏n
k=1

∏rk
l=1 Lkl!}d

′

L!d′

≤
I∏

i=1

di∏

j=1

qij∏

l=1

(Lijl)
d0−d′L

×
{∏p

k=1(Lk + L)!
∏I
i=1

∏di
j=1

∏qij
l=1(Lijl + L)!

∏n
k=1

∏rk
l=1(Lkl + L)!}d′

L!d′

≤ (K + L)!d
′(p+|q|+|r|−1)

I∏

i=1

di∏

j=1

qij∏

l=1

(Lij)
d0−d′L (L− V (α, p, q, r) +K + L)!d

′

L!d′
.

Here we set Ω1 =

{
(α, p, q, r) ;

d0
V (α, p, q, r)−K = d′

}
(this is a finite set),

Ω2 =

{
(α, p, q, r) ;

d0
V (α, p, q, r)−K < d′

}
and we set

L = L(α, p, q, r) =




V (α, p, q, r)−K if (α, p, q, r) ∈ Ω1,[
d0
d′

]
+ 1 if (α, p, q, r) ∈ Ω2.

Remark that
d0
d′
< L ≤ d0

d′
+ 1 < V (α, p, q, r)−K + 1

holds for (α, p, q, r) ∈ Ω2. By this inequality, L ≤ V (α, p, q, r) − K holds for all
(α, p, q, r), because L and V (α, p, q, r) − K + 1 are natural numbers. By the choice
of L, we have C̃2 ≤ C̃p+|q|+|r|3 by C̃3 = (K+maxL)!d

′
. Therefore, C̃2 can be estimated

by the same form as the case α̂ijkl(X) 6≡ 0.
By these observations, (6.13) is estimated by

YL,M ≤
∑′∑′′

GαpqrM ′

p∏

k=1

C̃3YLk,Mk

I∏

i=1

di∏

j=1

qij∏

l=1

C̃3YLijl,Mijl

n∏

k=1

rk∏

l=1

C̃3YLkl,Mkl+1,

(6.14)
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Let us consider the following recurrence formula for {ZL,M}L≥K,M≥0: ZK,M = ζ̂M
and

ZL,M =
∑′∑′′

GαpqrM ′

p∏

k=1

C̃3ZLk,Mk

I∏

i=1

di∏

j=1

qij∏

l=1

C̃3ZLijl,Mijl

n∏

k=1

rk∏

l=1

C̃3ZLkl,Mkl+1.

(6.15)
This recurrence formula is obtained by the following equation:

Z(T,X) = ζ̂(X)TK +GK+1

(
T,X, C̃3Z,

{
C̃3Z

T

}
,
{
C̃3S(Z)

})
(6.16)

with Z(T,X) = O(TK). By the construction of equation (6.16), we have

Z(T,X)� Y (T,X) = B(d
′+1,1)

T,X (W )(T,X),

and (6.16) is the same form as (6.9). Therefore, the convergence of a formal solution
Z(T,X) follows from the same argument in the case when α̂ijkl(X) 6≡ 0 for some
i, j, k, l. This completes the proof of Lemma 5.3.

7. REFINEMENT OF THEOREM 1.7

In this section, we shall prove Theorem 1.7. To do so, we reduce (2.1) to the more
exact form.

By the same linear change of t variables as in section 3, the vector field is reduced
to the following.

d∑

i,j=1

ai,j(x)ti∂tj 7→ (τ (1), . . . , τ (I))



N1

. . .
NI






∂τ(1)

...
∂τ(I)


−

∑

i,j,k,l

αijkl(x)τi,j∂τk,l
,

where αijkl(x) = O(|x|) denote holomorphic functions and Nj (j = 1, . . . , I) denotes
the nilpotent Jordan block of size dj .

Next, we write the differential operator with respect to x variables by the following
form:

n∑

k=1

bk(x)∂xk
= (x1, . . . , xn)J(b1, . . . , bn)(0)



∂x1

...
∂xn


−

n∑

k=1

b̂k(x)∂xk
,

where b̂k(x) = O(|x|2) (k = 1, . . . , n). Then we introduce new variables ξ =
(ξ(1), . . . , ξ(J)) ∈ Cn (ξ(k) = (ξk,1, . . . , ξk,nk

) ∈ Cnk) by

(ξ(1), . . . , ξ(J)) = (x1, . . . , xn)Q, Q−1J(b1, . . . , bn)(0)Q =



N̂1

. . .
N̂J
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where N̂j (j = 1, . . . , J) denotes the nilpotent Jordan block of size nj . By this linear
change of variables x, the above vector field with respect to x is reduced to

(ξ(1), . . . , ξ(J))



N̂1

. . .
N̂J






∂ξ(1)
...

∂ξ(J)


−

J∑

i=1

ni∑

j=1

βij(ξ)∂ξi,j ,

where βij(ξ) = O(|ξ|2) (i = 1, . . . , J ; j = 1, . . . , ni) denotes a holomorphic function.
Hereafter we rewrite (τ, ξ) by (t, x) again. Then the equation (2.1) is rewritten as

follows. 



(
N1 +N2 + c(0)

)
v =

∑

i,j,k,l

αijkl(x)ti,j∂tk,l
v

+
J∑

i=1

ni∑

j=1

βij(x)∂xi,j
v + η(x)v

+
∑

|α|=K
ζα(x)tα + gK+1(t, x, v, ∂tv, ∂xv),

v(t, x) = O(|t|K),

(7.1)

where c(x) = fu(ϕ(x)), η(x) = c(0)− c(x) = O(|x|) and

N1 =
I∑

j=1

dj−1∑

k=1

δtj,k+1∂tj,k , N2 =
J∑

j=1

nj−1∑

k=1

δxj,k+1∂xj,k
. (7.2)

Moreover,

gK+1(t, x, v, τ, ξ) =
∑

V (α,p,q,r)≥K+1

gαpqr(x)tαvpτ qξr,

V (α, p, q, r) = |α|+Kp+ (K − 1)|q|+K|r|. (7.3)

We put q = (qij) (1 ≤ i ≤ I, 1 ≤ j ≤ di) and r = (rij) (1 ≤ i ≤ J, 1 ≤ j ≤ ni) which
are associated with t = (tij) ∈ Cd and x = (xij) ∈ Cn. By using these notations and
definitions, we obtain the following result:

Theorem 7.1. Let sj = (1, 2, . . . , dj) ∈ Ndj (j = 1, 2, . . . , I), σj = (1, 2, . . . , nj) ∈
Nnj (j = 1, 2, . . . , J) and let n0 = max{d1, d2, . . . , dI , n1, n2, . . . , nJ}. We put
N(α, p, q, r) = max{j ; qi,j 6= 0 or ri,j 6= 0} for each nonzero term gα,p,q,r(x)tαupτ qξr.
Here we define a positive constant n′ by

n′ = max
α,p,q,r

{
N(α, p, q, r)

V (α, p, q, r)−K

}
. (7.4)

Then under Assumptions 1.1, 1.2, 1.3 and c(0)(= fu(ϕ(0))) 6= 0, the formal solution
belongs to the Gevrey class of order at most (s′,σ′) by

(s′,σ′) =

{
(s+ n1

0,σ + n2
0) if αi,j,k,l(x) 6≡ 0 or βi,j(x) 6≡ 0 for some i, j, k, l,

(s+ n′,σ) if αi,j,k,l(x) ≡ 0 and βi,j(x) ≡ 0 for all i, j, k, l,
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where s = (s1, . . . , sI) ∈ Nd, σ = (σ1, . . . ,σJ) ∈ Nn, n1
0 = (n0, . . . , n0) ∈ Nd,

n2
0 = (n0, . . . , n0) ∈ Nn and n′ = (n′, . . . , n′) ∈ Rd.

Theorem 1.7 is an immediate consequence of Theorem 7.1. Indeed, all the com-
ponents of (s1, . . . , sI) and (σ1, . . . ,σJ) are estimated by n0 and n′ 5 n0. Therefore,
all the components of s′ and σ′ are estimated by 2n0, which gives the conclusion of
Theorem 1.7.

8. EXAMPLES FOR THEOREM 7.1

Example 8.1. Let t = (t1, t2) ∈ C2 and x = (x1, x2, x3) ∈ C3, and consider
{

(t2∂t1 + x2∂x1
+ 1)u(t, x) = (t1 + t2)2 + x1t1∂t2u+ t1t2u× ∂x3

u,

u = O(|t|2).

Since αi,j,k,l(x) = x1 6≡ 0, the Gevrey order is estimated by

(s′,σ′) = (1, 2, 1, 2, 1) + (2, 2, 2, 2, 2) = (3, 4, 3, 4, 3).

Example 8.2. Let t = (t1, t2) ∈ C2 and x = (x1, x2, x3) ∈ C3, and consider
{

(t2∂t1 + x2∂x1
+ 1)u(t, x) = (t1 + t2)2 + t1t2u× ∂x3

u,

u = O(|t|2).

Since αi,j,k,l(x) ≡ 0 and βi,j(x) ≡ 0, the Gevrey order is estimated by

(s′,σ′) = (1, 2, 1, 2, 1) +

(
1

4
,

1

4
, 0, 0, 0

)
=

(
5

4
,

9

4
, 1, 2, 1

)
.

9. PROOF OF THEOREM 7.1

In order to prove Theorem 7.1, we prepare lemmas.

Lemma 9.1.

(i) The operator P := N1 +N2 + c(0) (c(0) 6= 0) is invertible on C[t]L[x]M for all
L ≥ K and M ≥ 0.

(ii) Let s = (s1, . . . , sI) ∈ Nd and σ = (σ1, . . . ,σJ) ∈ Nd be as before, and T =
t1 + . . .+ td ∈ C, X = x1 + . . .+ xn ∈ C. For u(t, x) ∈ C[t]L[x]M , if a majorant
relation B(s,σ)

t,x (u)(t, x) � WL,MT
LXM (WL,M ≥ 0) holds, then the following

majorant relation holds by a positive constant C0 independent of L and M .

B(s,σ)
t,x (P−1u)(t, x) � C0WL,MT

LXM (9.1)
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Lemma 9.2. Let s = (s1, . . . , sI) ∈ Nd and σ = (σ1, . . . ,σJ) ∈ Nn. We put T =
t1 + . . .+ td and X = x1 + . . .+ xn. For a formal power series W (T,X) in T and X,
if B(s,σ)

t,x (u)(t, x)�W (T,X), then the following majorant relations hold by a positive
constant C2:

B(s,σ)
t,x

(
∂ti,jP

−1u
)

(t, x)� C2∂T (T∂T )j−1W (T,X), (9.2)

B(s,σ)
t,x

(
∂xi,j

P−1u
)

(t, x)� C2∂X(X∂X)j−1W (T,X). (9.3)

The proofs of Lemmas 9.1 and 9.2 are similar to those of Lemmas 5.1 and 5.2, so
we omit them.

We put U(t, x) = Pv(t, x) as a new unknown function. Then U(t, x) satisfies the
following:




U(t, x) =
∑

i,j,k,l

αijkl(x)ti,j∂tk,l
P−1U +

J∑

i=1

ni∑

j=1

βij(x)∂xij
P−1U + η(x)P−1U

+
∑

|α|=K
ζα(x)tα + gK+1(t, x, P−1U, ∂tP

−1U, ∂xP
−1U),

U(t, x) = O(|t|K).

(9.4)
For equation (9.4), we apply the (s,σ)-Borel transform, then (9.4) is reduced to the
following:

B(s,σ)
t,x (U)(t, x) = B(s,σ)

t,x

( ∑

i,j,k,l

αijkl(x)ti,j∂tk,l
P−1U

)

+ B(s,σ)
t,x

( J∑

k=i

ni∑

j=1

βij(x)∂xij
P−1U

)

+ B(s,σ)
t,x

(
η(x)P−1U

)
+
∑

|α|=K

ζα(x)|α|!|β|!
(s · α)!(σ · β)!

tα

+ B(s,σ)
t,x

{
gK+1(t, x, P−1U, ∂tP

−1U, ∂xP
−1U)

}
.

(9.5)

By Lemma 5.2, (i) and Lemma 9.2, if a majorant relation B(s,σ)
t,x (U)(t, x) �

W (T,X) is satisfied, then there exists a positive constant C3 such that the following
majorant relations hold:

B(s,σ)
t,x

(
αijkl(x)tij∂tkl

P−1U
)

(t, x)� C3|αijkl|(X)(T∂T )lW (T,X), (9.6)

B(s,σ)
t,x

(
βij(x)∂xi,j

P−1U
)

(t, x)� C3|βij |(X)∂X(X∂X)j−1W (T,X), (9.7)

B(s,σ)
t,x

(
η(x)P−1U

)
(t, x)� C3|η|(X)W (T,X), (9.8)

B(s,σ)
t,x

(
gK+1(t, x, P−1U, ∂tP

−1U, ∂xP
−1U)

)

� |gK+1|(T,X,C3W, {C3∂T (T∂T )j−1W}i,j , {C3∂X(X∂X)j−1W}i,j).
(9.9)
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On the other hand, for the Borel transform of
∑
ζα(x)tα, we have

∑

|α|=K

ζα(x)|α|!|β|!
(s · α)!(σ · β)!

tα �
( ∑

|α|=K
|ζα|(X)

)
TK =: ζ(X)TK . (9.10)

We remark that 1 ≤ j ≤ n0 = max{d1, . . . , dI , n1, . . . , nJ} for j in (9.9).
Since |βij |(X) = O(X2), we put a holomorphic function |β̂ij |(X) = |βij |(X)/X =

O(X). Then the following relation holds.

|βij |(X)∂X(X∂X)j−1W =: ˆ|βij |(X)(X∂X)jW.

We consider the following equation.

W =
∑

i,j,k,l

α̃ijkl(X)(T∂T )lW +
J∑

i=1

ni∑

j=1

β̃ij(X)(X∂X)jW + η̃(X)W + ζ(X)TK

+ |gK+1|(T,X,C3W, {C3∂T (T∂T )j−1W}i,j , {C3∂X(X∂X)j−1W}i,j),
(9.11)

with W = O(TK), where α̃ijkl(X) = C3|αijkl|(X), β̃ij(X) = C3|β̂ij |(X) and
η̃(X) = C3|η|(X) all vanish at X = 0. By the construction of this equation, it is
easily seen that

B(s,σ)
t,x (U)(t, x)�W (T,X).

Now we put F (X) = 1 − η̃(X). Since F (0) = 1, by multiplying 1/F (X) for both
sides, the equation (9.11) is reduced to the following.

W =
∑

i,j,k,l

α̂ijkl(X)(T∂T )lW +

J∑

i=1

ni∑

j=1

β̄ij(X)(X∂X)jW + ζ̂(X)TK

+GK+1(T,X,C3W, {C3∂T (T∂T )j−1W}i,j , {C3∂X(X∂X)j−1(W )}i,j),
(9.12)

where α̂ijkl(X) = α̃ijkl(X)/F (X) = O(X) and the others are similarly defined.
Especially β̄ij(X) = O(X).

For the equation (9.12), the following lemma holds.

Lemma 9.3.

(i) If α̂ijkl(X) 6≡ 0 or β̄ij(X) 6≡ 0 for some i, j, k, l, then the formal solu-
tion W (T,X) of (9.12) belongs to the Gevrey class G(n0+1,n0+1)

T,X , where n0 =
max{d1, . . . , dI , n1, . . . , nJ}.

(ii) If α̂ijkl(X) ≡ 0 and β̄ij(X) ≡ 0 for all i, j, k, l, then the formal solution W (T,X)

of (9.12) belongs to the Gevrey class G(n
′+1,1)

T,X , where n′ is the constant defined
by (7.4).

Since Lemma 9.3, (i) can be proved by similarly to that of Lemma 5.3, and
Lemma 9.3, (ii) is a special case of Theorem 1.6 in the previous paper [12], we omit
the proof of Lemma 9.3.
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By Lemma 9.3, W (T,X) ∈ G(n0+1,n0+1)
T,X or G(n

′+1,1)
T,X . On the other hand, the

majorant relation B(s,σ)
t,x (U)(t, x)�W (T,X). Therefore, we have

B(s,σ)
t,x (U)(t, x) ∈ G(n0+1,n0+1)

T,X or G(n
′+1,1)

T,X ,

which proves Theorem 3.3.
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