Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Results of experimental and numerical investigations of wood chips drying are described in the paper. Experiments are carried out on two test facilities: a small laboratory rig and a larger pre-prototype dryer. Both facilities are thorough-circulation convective air dryers. The first one is a batch dryer, whereas the second one is a continuous dryer with wood chips flowing down by gravity from a charging hopper to a gutter with the aid of screw-conveyor. The latter is considered a half scale model (preprototype) for professional drying installations. A low feeding rate of wood chips into the pre-prototype dryer makes the process quasi-stationary and the difference between it and a batch drying is negligible. So, most experiments at this facility were carried out as batch dryers with non-agitated packed beds. The investigations exhibit the same linear correlation between the mass of evaporated water from the packed bed and the drying air velocity for both facilities. Numerical analysis of the drying process is conducted using the Ansys Fluent software enriched in drying capabilities by means of self-written procedures – user defined functions. Simulations confirmed a phenomenon of a drying front observed in the small laboratory rig. A thin layer of wood chips comprises the whole heat exchange and moisture evaporation phenomenon. The drying front travels downstream in the course of the process separating the already dried layer and still wet layer.
Czasopismo
Rocznik
Tom
Strony
39--73
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, 80-231 Gdańsk, Fiszera 14, Poland
autor
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, 80-231 Gdańsk, Fiszera 14, Poland
autor
- Gdańsk School of Higher Education, 80-875 Gdańsk, Biskupia 24B
Bibliografia
- [1] Dzurenda L., Banski A.: Influence of moisture content of combusted wood on the thermal efficiency of a boiler. Arch. Thermodyn. 38(2017), 1, 63–74.
- [2] Dzurenda L., Banski A.: Dependance of the boiler flue gas losses on humidity of wood bio-mass. Arch. Thermodyn. 36(2015), 4, 77–86.
- [3] Dudyński M., Bajer K., Sosnowska M., Kwiatkowski K.: Biomass and agriculture, industrial and communal waste gasification systems. In: Kiciński J., Cenian A., Lampart P. (Eds.), Production of Electricity and Heat from Biomass during Gasification Process (J. Kiciński, A. Cenian, P. Lampart, Eds.). Wydawnictwo IMP PAN, Gdańsk 2015 (in Polish).
- [4] Li H., Chen Q., Zhang X., Finney K.N., Sharifi V.N., Swithenbank J.: Evaluation of a biomass drying process using waste heat from process industries: A case study. Appl. Therm. Eng. 35(2012), 71–80.
- [5] Kudra T., Platon R., Navarri P.: www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/canmetenergy/files/pubs/2009-003.pdf (accessed 20 Nov. 2015).
- [6] Gong Z.-X., Mujumdar A.S.: http://www.arunmujumdar.com/file/Simprosys/DryingSoftwareArticle.pdf (accessed 9 Jan. 2015).
- [7] Gong Z.-X., Mujumdar A.S., Stanovsky J.: http://www.simprotek.com/App_Docs/Simprosys-FiberboardDrying.pdf (accessed 9 Jan. 2015).
- [8] Straatsma J., van Houwelingen G., Meulman A.P., Steenbergen A.E.: http://onlinelibrary.wiley.com/doi/10.1111/j.1471-0307.1991.tb01917.x/abstract (accessed 9 Aug. 2007).
- [9] Verdurmen R.E.M., Straatsma H., Verschueren M., Van Haren J.J., Smit E.; Bargeman G., De Jong P.: http://lait.dairy-journal.org/ articles/lait/pdf/2002/04/08.pdf (accessed 2002).
- [10] Staniszewski B.: Thermodynamics. PWN, 1978 (in Polish).
- [11] http://www.ansys.com/Products/Fluids/ANSYS-Fluent (accessed 5 Dec. 2013)
- [12] Krawczyk P., Badyda K.: Two-dimensional CFD modeling of the heat and mass transfer process during sewage sludge drying in a solar dryer. Arch. Thermodyn. 32(2011), 4, 3–16.
- [13] http://www.ansys.com/Support
- [14] Subramanian R.S.: http://web2.clarkson.edu/projects/subramanian/ch330/notes/Flow%20Through%20Packed%20and%20Fluidized%20Beds.pdf.
- [15] Jia Y., Li Y., Hlavka D.: http://www.me.rochester.edu/courses/ME241.gans/PackedBeds%2811%29.pdf (April 29, 2009) (accessed 29 April 2009).
- [16] http://www.christycatalytics.com/hs-fs/hub/55271/file-14603304-pdf/docs/proxsvers_pressure_drop_bulletin.pdf (December 2010) (accessed 2 Dec. 2010).
- [17] Whitaker S.: Elementary Heat Transfer Analysis. Pergamon Press, New York 1976.
- [18] Glijer L.: Wood drying and not only. Wieś Jutra, Warszawa 2011 (in Polish).
- [19] Simpson W., TenWolde A.: Physical Properties and Moisture Relations of Wood. In: Wood Handbook: Wood as an Engineering Material. Madison, 1999.
- [20] Seader J.D., Henley E.J., Roper D.K.: Separation Process Principles. Chemical and Biochemical Operations. John Wiley & Sons, 2011.
- [21] http://www.iedu.com/Solar/Engines/Hydrodyne/AntoineEq.html (2011).
- [22] http://www.chemeurope.com/en/encyclopedia/Arden_Buck_Equation.html (accessed 2016).
- [23] http://www.chemeurope.com/en/encyclopedia/Goff-Gratch_equation.html (accessed 2016).
- [24] Vömel H.: https://www.eas.ualberta.ca/jdwilson/EAS372_13/Vomel_CIRES_- satvpformulae.html , CIRES, University of Colorado, Boulder (accessed 1 Dec. 2011).
- [25] Ananias R.A., Mougel E., Zoulalian A.: Introducing an overall mass-transfer coefficient for prediction of drying curves at low temperature drying rates. Wood Sci. Technol. 43(2009), 43–56.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-beb8b9dd-dbfa-45aa-b540-26e6696bde26