Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Particulate matters (PMs) are considered as one of the air pollutants generally associated with poor air quality in both outdoor and indoor environments. The composition, distribution and size of these particles hazardously afect the human health causing cardiovascular health problems, lung dysfunction, respiratory problems, chronic obstructive pulmonary disease and lungs cancer. Classifcation models developed by analyzing mass concentration time series data of atmospheric particulate matter can be used for the prediction of air quality and for issuing warnings to protect the health of the public. In this study, mass concentration time series data of both outdoor and indoor particulates matters PM2.5 (aerodynamics size up to 2.5 μ) and PM10.0 (aerodynamics size up to 10.0 μ) were acquired using Haz-Dust EPAM-5000 from six diferent locations of the Muzafarabad city, Azad Kashmir. The linear and nonlinear approaches were used to extract mass concentration time series features of the indoor and outdoor atmospheric particulates. These features were given as an input to the robust machine learning classifers. The support vector machine (SVM) kernels, ensemble classifers, decision tree and K-nearest neighbors (KNN) are used to classify the indoor and outdoor particulate matter time series. The performance was estimated in terms of area under the curve (AUC), accuracy, true negative rate, true positive rate, negative predictive value and positive predictive value. The highest accuracy (95.8%) was obtained using cubic and coarse Gaussian SVM along with the cosine and cubic KNN, while the highest AUC, i.e., 1.00, is obtained using fne Gaussian and cubic SVM as well as with the cubic and weighted KNN.
Wydawca
Czasopismo
Rocznik
Tom
Strony
945--963
Opis fizyczny
Bibliogr. 99 poz.
Twórcy
autor
- Department of Computer Sciences and Information Technology, University of Azad Jammu & Kashmir, City Campus, Muzafarabad, AJ&K 13100, Pakistan
autor
- Department of Computer Sciences and Information Technology, University of Azad Jammu & Kashmir, City Campus, Muzafarabad, AJ&K 13100, Pakistan
- College of Computer Science and Engineering, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
autor
- Department of Computer Sciences and Information Technology, University of Azad Jammu & Kashmir, City Campus, Muzafarabad, AJ&K 13100, Pakistan
autor
- Department of Physics, University of Azad Jammu & Kashmir, Chehla Campus, Muzafarabad, AJ&K 13100, Pakistan
- Department of Computer Sciences and Information Technology, University of Azad Jammu & Kashmir, City Campus, Muzafarabad, AJ&K 13100, Pakistan
autor
- College of Computer Science and Engineering, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
autor
- Department of Physics, University of Azad Jammu & Kashmir, Chehla Campus, Muzafarabad, AJ&K 13100, Pakistan
autor
- Department of Computer Sciences and Information Technology, University of Azad Jammu & Kashmir, City Campus, Muzafarabad, AJ&K 13100, Pakistan
Bibliografia
- 1. Albalak R, Keeler GJ, Frisancho AR, Haber M (1999) Assessment of PM10 concentrations from domestic biomass fuel combustion in two rural Bolivian highland villages. Environ Sci Technol 33:2505–2509. https://doi.org/10.1021/es981242q
- 2. Ali Shah SA, Aziz W, Ahmed Nadeem MS et al (2019) A novel phase space reconstruction- (PSR-) based predictive algorithm to forecast atmospheric particulate matter concentration. Sci Program 2019:1–12. https://doi.org/10.1155/2019/6780379
- 3. Annesi-Maesano I, Forastiere F, Kunzli N, Brunekref B (2007) Particulate matter, science and EU policy. Eur Respir J 29:428–431. https://doi.org/10.1183/09031936.00129506
- 4. Asim Y, Raza B, Malik AK et al (2018) A multi-modal, multi-atlas-based approach for Alzheimer detection via machine learning. Int J Imaging Syst Technol 28(2):113–123
- 5. Avci E, Hanbay D, Varol A (2007) An expert discrete wavelet adaptive network based fuzzy inference system for digital modulation recognition. Expert Syst Appl 33:582–589. https://doi.org/10.1016/j.eswa.2006.06.001
- 6. Aziz W, Arif M (2006) Complexity analysis of stride interval time series by threshold dependent symbolic entropy. Eur J Appl Physiol 98:30–40. https://doi.org/10.1007/s00421-006-0226-5
- 7. Aziz W, Rafique M, Ahmad I et al (2014) Classification of heart rate signals of healthy and pathological subjects using threshold based symbolic entropy. Acta Biol Hung 65:252–264. https://doi.org/10.1556/ABiol.65.2014.3.2
- 8. Bea SA, Ayora C, Carrera J et al (2010) Geochemical and environmental controls on the genesis of soluble efflorescent salts in coastal mine tailings deposits: a discussion based on reactive transport modeling. J Contam Hydrol 111:65–82. https://doi.org/10.1016/j.jconhyd.2009.12.005
- 9. Bigger JT, Kleiger RE, Fleiss JL et al (1988) Components of heart rate variability measured during healing of acute myocardial infarction. Am J Cardiol 61:208–215. https://doi.org/10.1016/0002-9149(88)90917-4
- 10. Bilchick KC, Fetics B, Djoukeng R et al (2002) Prognostic value of heart rate variability in chronic congestive heart failure (Veterans Affairs’ Survival Trial of Antiarrhythmic Therapy in Congestive Heart Failure). Am J Cardiol 90:24–28. https://doi.org/10.1016/S0002-9149(02)02380-9
- 11. Casolo GC, Stroder P, Signorini C et al (1992) Heart rate variability during the acute phase of myocardial infarction. Circulation 85:2073–2079
- 12. Chen YS, Sheen PC, Chen ER et al (2004) Effects of Asian dust storm events on daily mortality in Taipei, Taiwan. Environ Res 95:151–155. https://doi.org/10.1016/j.envres.2003.08.008
- 13. Chou KC (2005) Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21:10–19. https://doi.org/10.1093/bioinformatics/bth466
- 14. Chou K-C, Shen H-B (2007a) Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites. J Proteome Res. https://doi.org/10.1021/pr060635i
- 15. Chou KC, Shen HB (2007b) Recent progress in protein subcellular location prediction. Anal Biochem 370:1–16. https://doi.org/10.1016/j.ab.2007.07.006
- 16. Chou KC, Shen HB (2007c) Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides. Biochem Biophys Res Commun 357:633–640. https://doi.org/10.1016/j.bbrc.2007.03.162
- 17. Cleveland WS, Cleveland WS (2015) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 1459:37–41. https://doi.org/10.1080/01621459.1979.10481038
- 18. Dobrowolski AP, Wierzbowski M, Tomczykiewicz K (2012) Multiresolution MUAPs decomposition and SVM-based analysis in the classification of neuromuscular disorders. Comput Methods Programs Biomed 107:393–403. https://doi.org/10.1016/j.cmpb.2010.12.006
- 19. Dold B (2006) Element flows associated with marine shore mine tailings deposits. Environ Sci Technol 40:752–758. https://doi.org/10.1021/es051475z
- 20. Faust O, Acharya UR, Adeli H, Adeli A (2015) Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure 26:56–64
- 21. Fu K, Qu J, Chai Y, Zou T (2015) Hilbert marginal spectrum analysis for automatic seizure detection in EEG signals. Biomed Signal Process Control 18:179–185. https://doi.org/10.1016/j.bspc.2015.01.002
- 22. Gammerman A, Luo Z, Vega J, Vovk V (2016) Conformal and probabilistic prediction with applications: 5th international symposium, COPA 2016 Madrid, Spain, April 20–22, 2016 proceedings. Lecture notes in computer science (including subseries lecture notes in artificial intelligence lecturer notes bioinformatics), vol 9653, pp 185–195. https://doi.org/10.1007/978-3-319-33395-3
- 23. Hajian-Tilaki K (2013) Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp J Intern Med 4:627–635. https://doi.org/10.1017/CBO9781107415324.004
- 24. Hayat M, Khan A (2012) Discriminating outer membrane proteins with fuzzy k-nearest neighbor algorithms based on the general form of Chou’s PseAAC. Protein Pept Lett 19:411–421. https://doi.org/10.2174/092986612799789387
- 25. He S, Mazumdar S, Arena VC (2006) A comparative study of the use of GAM and GLM in air pollution research. Environmetrics 17:81–93. https://doi.org/10.1002/env.751
- 26. Hu H, Shine J, Wright RO (2007) The challenge posed to children’s health by mixtures of toxic waste: the tar creek superfund site as a case-study. Pediatr Clin North Am 54:155–175. https://doi.org/10.1016/j.pcl.2006.11.009
- 27. Huang CL, Wang CJ (2006) A GA-based feature selection and parameters optimization for support vector machines. Expert Syst Appl 31(2):231–240
- 28. Hussain L (2018) Detecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approach. Cogn Neurodyn 12:271–294. https://doi.org/10.1007/s11571-018-9477-1
- 29. Hussain L, Aziz W, Kazmi ZH, Awan IA (2014) Classification of human faces and non faces using machine learning techniques. Int J Electron Electr Eng 2:116–123. https://doi.org/10.12720/ijeee.2.2.116-123
- 30. Hussain L, Aziz W, Khan AS et al (2015a) Classification of electroencephlography (EEG) alcoholic and control subjects using machine learning ensemble methods. J Multidiscip Eng Sci Technol 2:126–131
- 31. Hussain L, Aziz W, Nadeem SA, Abbasi AQ (2015b) Classification of Normal and Pathological Heart Signal Variability Using Machine Learning Techniques. Int J Darshan Inst Eng Res Emerg Technol 3:13–19
- 32. Hussain L, Aziz W, Alowibdi JS et al (2017a) Symbolic time series analysis of electroencephalographic (EEG) epileptic seizure and brain dynamics with eye-open and eye-closed subjects during resting states. https://doi.org/10.1186/s40101-017-0136-8
- 33. Hussain L, Aziz W, Alowibdi JSJSJS et al (2017b) Symbolic time series analysis of electroencephalographic (EEG) epileptic seizure and brain dynamics with eye-open and eye-closed subjects during resting states. J Physiol Anthropol 36:21. https://doi.org/10.1186/s40101-017-0136-8
- 34. Hussain L, Aziz W, Saeed S et al (2017c) Complexity analysis of EEG motor movement with eye open and close subjects using multiscale permutation entropy (MPE) technique. Biomed Res 28:7104–7111
- 35. Hussain L, Aziz W, Saeed S (2017d) Coupling functions between brain waves: significance of opened/closed eyes. J Syst Cybern Inform 15:275–280
- 36. Hussain L, Aziz W, Saeed S et al (2017e) Complexity analysis of EEG motor movement with eye open and close subjects using multiscale permutation entropy (MPE) technique. Biomed Res 28:7104–7111
- 37. Hussain L, Aziz W, Saeed S et al (2017f) Quantifying the dynamics of electroencephalographic (EEG) signals to distinguish alcoholic and non-alcoholic subjects using an MSE based K-d tree algorithm. Biomed Eng Biomed Tech. https://doi.org/10.1515/bmt-2017-0041
- 38. Hussain L, Shafi I, Saeed S et al (2017g) A radial base neural network approach for emotion recognition in human speech. Int J Comput Sci Netw Secur 17:52–62
- 39. Hussain L, Ahmed A, Saeed S et al (2018a) Prostate cancer detection using machine learning techniques by employing combination of features extracting strategies. Cancer Biomark 21:393–413. https://doi.org/10.3233/CBM-170643
- 40. Hussain L, Ali A, Rathore S et al (2018b) Applying Bayesian network approach to determine the association between morphological features extracted from prostate cancer images. IEEE Access 7:1586–1601. https://doi.org/10.1109/ACCESS.2018.2886644
- 41. Hussain L, Aziz W, Saeed S et al (2018c) Automated breast cancer detection using machine learning techniques by extracting different feature extracting strategies. In: 2018 17th IEEE international conference on trust, security and privacy in computing and communications/12th IEEE international conference on big data science and engineering (TrustCom/BigDataSE). IEEE, pp 327–331
- 42. Hussain L, Aziz W, Saeed S et al (2018d) Spatial wavelet-based coherence and coupling in EEG signals with eye open and closed during resting state. IEEE Access 6:37003–37022. https://doi.org/10.1109/ACCESS.2018.2844303
- 43. Hussain L, Aziz W, Saeed S et al (2018e) Arrhythmia detection by extracting hybrid features based on refined fuzzy entropy (FuzEn) approach and employing machine learning techniques. Waves Random Complex Med. https://doi.org/10.1080/17455030.2018.1554926
- 44. Hussain L, Aziz W, Saeed S et al (2018f) Quantifying the dynamics of electroencephalographic (EEG) signals to distinguish alcoholic and non-alcoholic subjects using an MSE based K-d tree algorithm. Biomed Eng Biomed Tech 63:481–490. https://doi.org/10.1515/bmt-2017-0041
- 45. Hussain L, Saeed S, Awan IA et al (2018g) Detecting brain tumor using machine learning techniques based on different features extracting strategies. Curr Med Imaging 14:595–606. https://doi.org/10.2174/1573405614666180718123533
- 46. Hussain L, Saeed S, Awan IA, Idris A (2018h) Multiscaled complexity analysis of EEG epileptic seizure using entropy-based techniques. Arch Neurosci 5:1–11. https://doi.org/10.5812/archneurosci.61161
- 47. Hussain L, Aziz W, Alshdadi AA et al (2019a) Analyzing the dynamics of lung cancer imaging data using refined fuzzy entropy methods by extracting different features. IEEE Access 7:64704–64721. https://doi.org/10.1109/ACCESS.2019.2917303
- 48. Hussain L, Saeed S, Idris A et al (2019b) Regression analysis for detecting epileptic seizure with different feature extracting strategies. Biomed Eng Biomed Tech. https://doi.org/10.1515/bmt-2018-0012
- 49. Ito K, Mathes R, Ross Z et al (2011) Fine particulate matter constituents associated with cardiovascular hospitalizations and mortality in New York City. Environ Health Perspect 119:467–473. https://doi.org/10.1289/ehp.1002667
- 50. Kado NY, Colome SD, Kleinman MT et al (1994) Indoor-outdoor concentrations and correlations of PM10-associated mutagenic activity in nonsmokers’ and asthmatics’ homes. Environ Sci Technol 28:1073–1078. https://doi.org/10.1021/es00055a016
- 51. Kleiger RE, Miller JP, Bigger JT, Moss AJ (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59:258–282. https://doi.org/10.1016/0002-9149(87)90795-8
- 52. Laden F, Neas LM, Dockery DW, Schwartz J (2014) Association of fine particulate matter from different sources with daily mortality in six association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ Health Perspect 108:941–947. https://doi.org/10.1289/ehp.00108941
- 53. Lee CK, Lin SC (2008) Chaos in air pollutant concentration (APC) time series. Aerosol Air Qual Res 8:381–391. https://doi.org/10.4209/aaqr.2008.09.0039
- 54. Lee SH, Lim JS, Kim JK et al (2014) Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance. Comput Methods Programs Biomed 116:10–25. https://doi.org/10.1016/j.cmpb.2014.04.012
- 55. Mar TF, Ito K, Koenig JQ et al (2006) PM source apportionment and health effects. 3. Investigation of inter-method variations in associations between estimated source contributions of PM2.5 and daily mortality in Phoenix, AZ. J Expo Sci Environ Epidemiol 16:311–320. https://doi.org/10.1038/sj.jea.7500465
- 56. Martínez L, Monsalve SM, Yohannessen Vásquez K et al (2016) Indoor-outdoor concentrations of fine particulate matter in school building microenvironments near a mine tailing deposit. AIMS Environ Sci 3:752–764. https://doi.org/10.3934/environsci.2016.4.752
- 57. Moreno ME, Acosta-Saavedra LC, Meza-Figueroa D et al (2010) Biomonitoring of metal in children living in a mine tailings zone in Southern Mexico: a pilot study. Int J Hyg Environ Health 213:252–258. https://doi.org/10.1016/j.ijheh.2010.03.005
- 58. Muller KR, Mika S, Ratsch G, Tsuda K, Scholkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12(2):181–201
- 59. Naeher LP, Smith KR, Leaderer BP et al (2001) Carbon monoxide as a tracer for assessing exposures to particulate matter in wood and gas cookstove households of highland Guatemala. Environ Sci Technol 35:575–581. https://doi.org/10.1021/es991225g
- 60. Ocak H (2009) Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl 36:2027–2036. https://doi.org/10.1016/j.eswa.2007.12.065
- 61. Ojelede ME, Annegarn HJ, Kneen MA (2012) Evaluation of aeolian emissions from gold mine tailings on the Witwatersrand. Aeolian Res 3:477–486. https://doi.org/10.1016/j.aeolia.2011.03.010
- 62. Ostro BD, Broadwin R, Lipsett MJ (2000) Coarse and fine particles and daily mortality in the Coachella Valley, California: a follow-up study. J Expo Anal Environ Epidemiol 10:412–419. https://doi.org/10.1038/sj.jea.7500094
- 63. Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci 88:2297–2301. https://doi.org/10.1073/pnas.88.6.2297
- 64. Polat K, Güneş S (2007) Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl Math Comput 187:1017–1026. https://doi.org/10.1016/j.amc.2006.09.022
- 65. Ponikowski P, Anker SD, Chua TP et al (1997) Depressed heart rate variability as an independent predictor of death in chronic congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 79:1645–1650. https://doi.org/10.1016/S0002-9149(97)00215-4
- 66. Portnov BA, Paz SA (2008) Climate change and urbanization in arid regions. Ann Arid Zone 47:1–15
- 67. Portnov BA, Paz S, Shai L (2011) What does the inflow of patients into the rambam medical center in Haifa tells us about outdoor temperatures and air pollution? Geogr Res Forum 31:39–52
- 68. Qumar A, Aziz W, Saeed S et al (2013) Comparative study of multiscale entropy analysis and symbolic time series analysis when applied to human gait dynamics. In: Proceedings of ICOSST 2013—2013 international conference on open source systems and technologies
- 69. Rathore S, Iftikhar A, Ali A et al (2012) Capture largest included circles: an approach for counting red blood cells. Commun Comput Inf Sci 281:373–384. https://doi.org/10.1007/978-3-642-28962-0_36
- 70. Rathore S, Hussain M, Aksam Iftikhar M, Jalil A (2014) Ensemble classification of colon biopsy images based on information rich hybrid features. Comput Biol Med 47:76–92. https://doi.org/10.1016/j.compbiomed.2013.12.010
- 71. Rathore S, Hussain M, Khan A (2015) Automated colon cancer detection using hybrid of novel geometric features and some traditional features. Comput Biol Med 65:279–296. https://doi.org/10.1016/j.compbiomed.2015.03.004
- 72. Reindl DT, Guay J, Klein SA (2001) Indoor environmental control : review of current recommendations and survey of conditions at a natural history museum. ASHRAE Trans 107:325–335
- 73. Repace J, Lowrey A (1980) Indoor air pollution, tobacco smoke, and public health. Science (80-) 208:464–472. https://doi.org/10.1126/science.7367873
- 74. Rich MW, Saini JS, Kleiger RE et al (1988) Correlation of heart rate variability with clinical and angiographic variables and late mortality after coronary angiography. Am J Cardiol 62:714–717. https://doi.org/10.1016/0002-9149(88)91208-8
- 75. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Circ Physiol 278:H2039–H2049. https://doi.org/10.1152/ajpheart.2000.278.6.H2039
- 76. Rinehart LR, Fujita EM, Chow JC et al (2006) Spatial distribution of PM2.5 associated organic compounds in central California. Atmos Environ 40:290–303. https://doi.org/10.1016/j.atmosenv.2005.09.035
- 77. Rosso OA, Blanco S, Yordanova J et al (2001) Wavelet entropy: a new tool for analysis of short duration brain electrical signals. J Neurosci Methods 105:65–75. https://doi.org/10.1016/S0165-0270(00)00356-3
- 78. Saeed S, Aziz W, Rafique M et al (2017) Quantification of non-linear dynamics and chaos of ambient particulate matter concentrations in Muzaffarabad City. Aerosol Air Qual Res 17:849–856. https://doi.org/10.4209/aaqr.2016.04.0137
- 79. Schlesinger RB, Kunzli N, Hidy GM et al (2006) The health relevance of ambient particulate matter characteristics: coherence of toxicological and epidemiological inferences. Inhal Toxicol 18:95–125. https://doi.org/10.1080/08958370500306016
- 80. Schwartz J (1993) Air pollution and daily mortality in Birmingham, Alabama. Am J Epidemiol 137:1136–1147. https://doi.org/10.1093/oxfordjournals.aje.a116617
- 81. Stankovski T, Ticcinelli V, McClintock PVE, Stefanovska A (2017) Neural cross-frequency coupling functions. Front Syst Neurosci. https://doi.org/10.3389/fnsys.2017.00033
- 82. Stölzel M, Breitner S, Cyrys J et al (2007) Daily mortality and particulate matter in different size classes in Erfurt, Germany. J Expo Sci Environ Epidemiol 17:458–467. https://doi.org/10.1038/sj.jes.7500538
- 83. Stovern M, Betterton EA, Saez AE et al (2014a) Modeling the emission, transport and deposition of contaminated dust from a mine tailing site. Rev Environ Health 29:91–94. https://doi.org/10.1515/reveh-2014-0023
- 84. Stovern M, Felix O, Csavina J et al (2014b) Simulation of windblown dust transport from a mine tailings impoundment using a computational fluid dynamics model. Aeolian Res 14:75–83. https://doi.org/10.1016/j.aeolia.2014.02.008
- 85. Subasi A (2013) Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders. Comput Biol Med 43:576–586. https://doi.org/10.1016/j.compbiomed.2013.01.020
- 86. Tuininga YS, van Veldhuisen DJ, Brouwer J et al (1994) Heart rate variability in left ventricular dysfunction and heart failure: effects and implications of drug treatment. Br Heart J 72:509–513
- 87. Tzallas AT, Tsipouras MG, Fotiadis DI (2007) Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput Intell Neurosci. https://doi.org/10.1155/2007/80510
- 88. Tzallas AT, Tsipouras MG, Fotiadis DI (2009) Epileptic seizure detection in EEGs using time–frequency analysis. IEEE Trans Inf Technol Biomed 13:703–710. https://doi.org/10.1109/TITB.2009.2017939
- 89. Urmila PK, Richard HJ (1997) Pulmonary proinflammatory gene induction following acute exposure to residual oil fly ash: roles of particle-associated metals. Inhal Toxicol 9:679–701. https://doi.org/10.1080/089583797198033
- 90. Van Hoogenhuyze D, Weinstein N, Martin GJ et al (1991) Reproducibility and relation to mean heart rate of heart rate variability in normal subjects and in patients with congestive heart failure secondary to coronary artery disease. Am J Cardiol 68:1668–1676. https://doi.org/10.1016/0002-9149(91)90327-H
- 91. Vanderlei FM, Rossi RC, De Souza NM (2012) Heart rate variability in healthy. Pak J Physiol 22:173–178
- 92. Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10:988–999. https://doi.org/10.1109/72.788640
- 93. Virdi P, Narayan Y, Kumari P, Mathew L (2017) Discrete wavelet packet based elbow movement classification using fine Gaussian SVM. In: IEEE 1st international conference on power electronics, intelligent control and energy systems ICPEICES 2016. https://doi.org/10.1109/icpeices.2016.7853657
- 94. Wang D, Miao D, Xie C (2011) Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Syst Appl 38:14314–14320. https://doi.org/10.1016/j.eswa.2011.05.096
- 95. Wang R, Kwong S, Wang XZ, Jiang Q (2014) Segment based decision tree induction with continuous valued attributes. IEEE Trans Cybern 45(7):1262–1275
- 96. Weng Y-C, Chang N-B, Lee TY (2008) Nonlinear time series analysis of ground-level ozone dynamics in Southern Taiwan. J Environ Manag 87:405–414. https://doi.org/10.1016/j.jenvman.2007.01.023
- 97. Wu Y, Zhou Y, Saveriades G et al (2013) Local Shannon entropy measure with statistical tests for image randomness. Inf Sci (NY) 222:323–342. https://doi.org/10.1016/j.ins.2012.07.049
- 98. Zhang P, Gao BJ, Zhu X, Guo L (2011) Enabling fast lazy learning for data streams. In: Proceedings of IEEE international conference on data mining, ICDM, pp 932–941. https://doi.org/10.1109/icdm.2011.63
- 99. Zhiqiang Q, Siegmann K, Keller A et al (2000) Nanoparticle air pollution in major cities and its origin. Atmos Environ 34:443–451. https://doi.org/10.1016/S1352-2310(99)00252-6
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-beb5da20-e5a5-415e-a6de-7f4f31ccf130