PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Nontrivial solutions of discrete Kirchhoff-type problem via bifurcation theory

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we show that the bifurcation points for a discrete Kirchhoff-type problem with only local conditions, and we investigate the existence of positive and negative solutions for the problem when the nonlinear term ƒ is asymptotically linear at zero and is asymptotically 3-linear at infinity. By using bifurcation techniques and the idea of taking limits of connected branches, under the assumption that ƒ has some non-zero zeros, some results are also obtained.
Rocznik
Strony
559--573
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing, 400067, China
Bibliografia
  • [1] H. Berestycki, On some nonlinear Sturm–Liouville problems, J. Differential Equations 26 (1977), 375–390.
  • [2] X. Cao, G. Dai, Spectrum global bifurcation and nodal solutions to Kirchhoff-type equations, Electron. J. Differential Equations 2018 (2018), 1–10.
  • [3] O. Chakrone, EL M. Hssini, M. Rahmani, O. Darhouche, Multiplicity results for a p-Laplacian discrete problems of Kirchhoff type, Appl. Math. Comput. 276 (2016), 310–315.
  • [4] S. Cordeiro, C. Raposo, J. Ferreira, D. Rocha, M. Shahrouzi, Local existence for a viscoelastic Kirchhoff type equation with the dispersive term, internal damping, and logarithmic nonlinearity, Opuscula Math. 44 (2024), 19–47.
  • [5] G. Dai, Some global results for a class of homogeneous nonlocal eigenvalue problems, Commun. Contemp. Math. 21 (2019), 1750093.
  • [6] G. Dai, R. Hao, Existence of solutions for a p(x)-Kirchhoff-type equation, J. Math. Anal. Appl. 359 (2009), 275–284.
  • [7] G. Dai, R. Ma, Solutions for a p(x)-Kirchhoff type equation with Neumann boundary data, Nonlinear Anal. Real World Appl. 12 (2011), 2666–2680.
  • [8] G. Dai, J. Wei, Infinitely many non-negative solutions for a p(x)-Kirchhoff-type problem with Dirichlet boundary condition, Nonlinear Anal. 73 (2010), 3420–3430.
  • [9] E.N. Dancer, On the structure of solutions of non-linear eigenvalue problems, Indiana Univ. Math. J. 23 (1974), 1069–1076.
  • [10] Y. Gao, X. Luo, M. Zhen, Existence and classification of positive solutions for coupled purelycritical Kirchhoff system, Bull. Math. Sci. 14 (2024), 2450002.
  • [11] C.S. Goodrich, Discrete Kirchhoff equations with sign-changing coefficients, J. Difference Equ. Appl. 27 (2021), 664–685.
  • [12] S. Heidarkhani, G.A. Afrouzi, J. Henderson, S. Moradi, G. Caristi, Variational approaches to p-Laplacian discrete problems of Kirchhoff-type, J. Difference Equ. Appl. 23 (2017), 917–938.
  • [13] W.G. Kelley, A.C. Peterson, Difference Equations: An Introduction with Applications, 2nd ed., Harcourt/Academic Press, San Diego, 2001.
  • [14] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
  • [15] B. Kone, I. Nyanquini, S. Ouaro, Weak solutions to discrete nonlinear two-point boundary-value problems of Kirchhoff type, Electron. J. Differential Equations 2015 (2015), no. 10, 1–10.
  • [16] Y. Long, Nontrivial solutions of discrete Kirchhoff-type problems via Morse theory, Adv. Nonlinear Anal. 11 (2022), 1352–1364.
  • [17] Y. Long, X. Deng, Existence and multiplicity solutions for discrete Kirchhoff type problems, Appl. Math. Lett. 126 (2022), 107817.
  • [18] R. Ma, Y. An, Global structure of positive solutions for nonlocal boundary value problems involving integral conditions, Nonlinear Anal. 71 (2009), 4364–4376.
  • [19] K. Perera, Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Equ. 221 (2006), 246–255.
  • [20] P. Řehák, Oscillatory properties of second order half-linear difference equations, Czechoslovak Math. J. 51 (2001), 303–321.
  • [21] B. Ricceri, Existence, uniqueness, localization and minimization property of positive solutions for non-local problems involving discontinuous Kirchhoff functions, Adv. Nonlinear Anal. 13 (2024), 20230104.
  • [22] G.T. Whyburn, Topological Analysis, Princeton University Press, Princeton, NJ, 1958.
  • [23] J. Yang, J. Liu, Nontrivial solutions for discrete Kirchhoff-type problems with resonance via critical groups, Adv. Difference Equ. 2013 (2013), Article no. 308.
  • [24] Y. Yang, J.H. Zhang, Nontrivial solutions of a class of nonlocal problems via local linking theory, Appl. Math. Lett. 23 (2010), 377–380.
  • [25] F. Ye, X. Han, Global bifurcation result and nodal solutions for Kirchhoff-type equation, AIMS Math. 6 (2021), 8331–8341.
  • [26] F. Ye, S. Yu, The global interval bifurcation for Kirchhoff type problem with an indefinite weight function, J. Differential Equations 402 (2024), 315–327.
  • [27] Z. Yücedag, Solutions for a discrete boundary value problem involving Kirchhoff type equation via variational methods, TWMS J. Appl. Eng. Math. 8 (2018), 144–154.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-beb4b9d2-97b9-4dbc-bec4-0820e836b140
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.